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IR divergences in δN formalism

Starobinsky ’85, Sasaki/Stewart ’95
Wands/Malik/Lyth/Liddle ’00
Lyth/Malik/Sasaki ’04

• Consider some late, constant-energy-density surface
(reheating surface):

ds2 = e2ζdx i (eγ)ij dx j .

• Ignoring γij for the moment, one has

ζ(x) = N(ϕ+ δϕ(x))− N(ϕ)

= Nϕδϕ(x) +
1

2
Nϕϕδϕ(x)2 + · · ·

Lyth/Rodriguez ’05



• Consider the curvature correlator:

〈ζkζp〉 = N2
ϕ〈δϕkδϕp〉+

1

4
N2
ϕϕ〈(δϕ2)k(δϕ2)p〉+ · · ·

• Focus on the second term:

∼ N2
ϕϕ

∫
q,l
〈δϕqδϕk−qδϕlδϕp−l〉 .

• Use

δϕq ∼
H

q3/2
aq

to find the leading-log contribution from q, l � k , p :

N2
ϕϕH4(k)

∫
d3q

q3
∼ N2

ϕϕH4(k) ln(kL) .



Intuitive physical picture:

• Long-wavelength modes affect measured short-wavelength
fluctuations (e.g. L1).

• Modes outside the ‘box size’ can be absorbed in constant
ζ-background and are irrelevant (e.g. L2).

Lyth ’07



Fluctuations of the Hubble scale

• Even if only for conceptual reasons, we do care about very
large L, relevant for the late observer.

• Obviously, the technical origin of the effect is the dependence
of Nϕ(ϕ) on δϕq with q � k.

• Hence, the Hubble scale H should be modified analogously:

δϕ(x) ∼
∫

k

e−ikx

k3/2
H(ϕ(tk) + δϕ̄(x)) ak ,

where

δϕ̄(x) ∼
∫

q�k

e−iqx

q3/2
aq .



• Using this modified δϕ in ζ = N(ϕ+ δϕ)− N(ϕ) and
expanding in both δϕ and δϕ̄, one finds

〈ζkζp〉 ∼
δ3(k + p)

k3

[
N2
ϕH2 +

1

2
(H2 ln kL)

d2

dϕ2
(N2

ϕH2)

]
.

• With H2 ln kL ∼ 〈δϕ̄2〉1/k this gives

Pζ(k) ∼ N2
ϕH2 +

1

2
〈δϕ̄2〉1/k

d2

dϕ2
(N2

ϕH2) .

• We now replace the ‘time variable’ ϕ̄ by ln k = −ζ̄ :

d

dϕ
=

(
d ln k

dϕ

) (
d

d ln k

)
= Nϕ

d

d ln k
.



Geometry of the reheating surface

• We find

Pζ(k) =

(
1 − 〈ζ̄〉 d

d ln k
+

1

2
〈ζ̄2〉 d2

d(ln k)2

)
P0
ζ (k) ,

where P0
ζ is the (almost scale-invariant) tree-level spectrum.

• This are obviously the first terms of the Taylor expansion of

Pζ(k) = 〈 P0
ζ (ke−ζ̄) 〉 ,

where 〈..〉 is the average in ζ̄ (defined in patches of size 1/k)
over a box of size L.

• Can we get this simple result more directly?

see also Giddings/Sloth ’10



IR-safe correlation functions

• Define the almost scale-invariant spectrum as

Pζ(k) ∼ k3

∫
y
e iky 〈 ζ(x)ζ(x + y) 〉 .

• This is sensitive to the box-size L since the physical meaning
of y depends on the strongly varying background ζ̄.

• However, we can avoid this by selecting pairs of points using

the invariant distance z = y e ζ̄ . The z-dependence of the
correlator.

〈 ζ(x)ζ(x + ze−ζ̄) 〉

is then a background-independent and hence IR-safe object.

related to Urakawa/Tanaka ’10 ?



• Its Fourier transform is our desired IR-safe power spectrum:

P0
ζ (k) ∼ k3

∫
z
e ikz 〈 ζ(x)ζ(x + ze−ζ̄) 〉 .

• The original IR-sensitive power spectrum follows as

Pζ(k) ∼ k3

∫
y
e iky 〈 ζ(x) ζ(x + y) 〉

∼ k3

∫
y
e iky 〈 ζ(x) ζ(x + (ye ζ̄)e−ζ̄) 〉

∼ 〈 (ke−ζ̄)3

∫
z

exp(ike−ζ̄z) ζ(x) ζ(x + ze−ζ̄) 〉

∼ 〈P0
ζ (ke−ζ̄) 〉

in agreement with our previous result.



Tensor modes

• Our IR-safe power spectrum immediately generalizes to the
case of background tensor modes:

P0
ζ (k) ∼ k3

∫
z
e ikz〈ζ(x)ζ(x + e−ζ̄(e−γ̄/2z))〉 .

• As before, the length of z is the invariant distance between
the two points in the correlator.

• The calculation of the IR-sensitive spectrum produces an extra
term since ∫

d3(e−ζ̄e−γ̄/2z) = e−3ζ̄

∫
d3z .

The factor k3 is not automatically changed to (e−γ̄/2k)3.



• We find

Pζ(k) =
〈

(e−γ̄/2k̂)−3 P0
ζ (e−ζ̄−γ̄/2k)

〉
,

where k̂ is a unit-vector in k-direction.

• Expanding in leading non-trivial order in the background (and
assuming 〈ζ̄〉 = 0 for simplicity) gives

Pζ(k) =

(
1− 1

20
〈tr γ̄2〉 d

d ln k
+

1

2
〈ζ̄2〉 d2

d(ln k)2

)
P0
ζ (k)

(in agreement with Giddings/Sloth)

• The two terms are of the same order (tr γ̄2 is more slow-roll
suppressed, but comes with only one derivative in ln k).



Higher correlation functions

• We could try to generalize the ‘almost scale-invariant’
spectrum by writing

P(n)(k1...kn) ∼ k3n

∫
y1

· · ·
∫

yn

e i(k1y1+···+knyn)〈ζ(x)ζ(x+y1) · · · ζ(x+yn)〉

• However, it is not clear which particular combination of
k1...kn one should use to define the prefactor k3n.

• This is not irrelevant since factors e γ̄ will get tangled up in
this prefactor.

• Hence, we choose to write the general formula for the
higher-order analogue of the conventional spectrum
P(k) ∼ P(k)/k3.



• However, given these preliminaries, the generalization of our
formalism is completely straightforward.

• The IR-safe spectrum is defined as

P0
(n)(k1...kn) ∼

∫
z1

· · ·
∫

zn

e i(k1z1+···+knzn)〈ζ(x)ζ(x+y1) · · · ζ(x+yn)〉 ,

where

yi = yi (z , ζ̄, γ̄) = e−ζ̄−γ̄/2z .

In words:

• Measure the correlation function in terms of invariant
distances, characterized by a set of vectors zi .

• Then Fourier transform (going from zi to ki ).



• Then, by a straightforward generalization of the previous
calculations, one finds

P(n)(k1 , ... , kn) =
〈

e3nζ̄ P0
(n)(e−ζ̄−γ̄/2k1 , ... , e

−ζ̄−γ̄/2kn)
〉
.

• The prefactor e3nζ̄ comes from the naive scaling P0
(n) ∼ k−3n.

• This can be directly applied to observables measuring
non-Gaussianity, such as fNL.



Example:

Tensor mode effect on fNL in the squeezed limit

• Using ‘consistency relations’ (Maldacena ’02), we find

12

5
fNL(k1, k2) =

〈
(k̂ ′1)−3 P0

ζ (k ′1) d
d ln(1/k ′

2)

(
(k̂ ′2)−3 P0

ζ (k ′2)
) 〉

〈
(k̂ ′1)−3 P0

ζ (k ′1)
〉 〈

(k̂ ′2)−3 P0
ζ (k ′2)

〉
where k ′ = e−γ̄/2k .

• At leading order in the background γ̄2 this gives

fNL(k1, k2) =

[
1− 1

20
〈γ̄2〉 d

d ln k

]
f 0
NL(k1, k2) .



Explicit averaging over the background

• We want to calculate quantities of the type 〈f (ζ̄(x))〉.
• In principle, we have to average ζ̄(x) over the (large) observed

region of size L.

• However, this is equivalent to an ensemble average of ζ̄(0)
with IR cutoff L.

• Thus, we are dealing with a sum of Gaussian random variables

ζ̄(0) ∼
∫

1/L�q�k

(NϕH)(q)

q3/2
aq ,

which is again a Gaussian random variable of width

σ2 ≡ 〈ζ̄2〉 ∼
∫

1/L�q�k

(NϕH)2(q)

q3
.



• Thus, all we need is the single integral

1

σ
√

2π

∫
d ζ̄e−ζ̄

2/2σ2
f (ζ̄) .

• For example,

Pζ(k) =
1

σ
√

2π

∫
d ζ̄e−ζ̄

2/2σ2P0
ζ (ke−ζ̄) ,

where P0
ζ (k) is the (almost scale-invariant) tree-level

spectrum (NϕH)2, written as a function of k.

• The generalization to tensor modes, though conceptually
straightforward, is complicated by the matrix structure of γ̄
and the different independent polarizations involved.



Important conceptual comment:

• In fact, the there exists a value kmax corresponding to modes
that never left the horizon.

• For very large L, and for k sufficiently close to kmax , the
region where ke−ζ̄ > kmax is relevant in the ζ̄-integral.

• We need to assume that the very late observer is intelligent
enough to exclude such regions from his averaging.

• Technically, this is implemented as∫
ζ̄min=− ln(kmax/k)

d ζ̄ e−ζ̄
2/2σ2P0

ζ (ke−ζ̄)

• While this is physically harmless, it clearly affects the
convergence properties of the ζ̄-expansion



Summary

• An interesting class of IR divergences comes from
long-wavelength background modes.

• This effect seen be seen from an (appropriately modified)
δN formalism as well as from the ‘geometry of the reheating
surface’.

• One can define IR-safe correlators.

• One can return to usual correlators and calculate their
IR-sensitive corrections (both scalar and tensor) very explicitly.

• The generalization to multiple scalar fields is interesting but
(probably) conceptually straightforward.

• Are there observable effects (given our relatively small L)?

• Are there interesting implications for quantum gravity in
de Sitter space?


