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IR divergences in 6N formalism
Starobinsky '85, Sasaki/Stewart '95

Wands/Malik/Lyth/Liddle '00
Lyth/Malik/Sasaki '04

e Consider some late, constant-energy-density surface
(reheating surface):

o oe .
ds? = e dx’ (e7);dx.
e Ignoring ~y;; for the moment, one has

C(x) = N(p+dp(x)) = N(e)

1
= Npdp(x) + 5 0P (x)7 4 -

Lyth/Rodriguez '05



e Consider the curvature correlator:
2 1 o 2 2

(CkCp) = N (0pidepp) + 7 N ((097)k(00%)p) + -+

e Focus on the second term:
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to find the leading-log contribution from q,/ < k, p :
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Intuitive physical picture:

e Long-wavelength modes affect measured short-wavelength
fluctuations (e.g. L1).

e Modes outside the ‘box size' can be absorbed in constant
(-background and are irrelevant (e.g. L).

Lyth '07




Fluctuations of the Hubble scale

e Even if only for conceptual reasons, we do care about very
large L, relevant for the late observer.

e Obviously, the technical origin of the effect is the dependence
of Ny(p) on dpq with g < k.

e Hence, the Hubble scale H should be modified analogously:
e—ikx _
dip(x) ~ /k 32 H(p(tk) +0¢(x)) ak

where

e—iqx
53(x) ~ / € A
q<k q3/2 7



e Using this modified d¢ in ( = N(¢ + dp) — N(¢) and
expanding in both d¢ and dp, one finds

2

dy?

3*(k + p)

(ChCp) ~ — 5 NZH? + %(HzlnkL) (N2H?)

e With H?In kL ~ <5<,52>1/k this gives

d2
2

1
Pe(k) ~ N2H? + Z(66%)1/k —
C( ) © <90 >1/k dy

5 (N§H2).

e We now replace the ‘time variable’ @ by Ink = —( :

d  (dink d oy 9
dp  \ dy dink) — “dink’




Geometry of the reheating surface

e We find
P = (1= Qg + 5@ ) P00,

where 778 is the (almost scale-invariant) tree-level spectrum.

e This are obviously the first terms of the Taylor expansion of

Pe(k) = (Pke ™)),

where (..) is the average in { (defined in patches of size 1/k)
over a box of size L.

e Can we get this simple result more directly?

see also Giddings/Sloth '10



IR-safe correlation functions

e Define the almost scale-invariant spectrum as

Pe(k) ~ K / e (C()C(x +y)).

Yy

e This is sensitive to the box-size L since the physical meaning
of y depends on the strongly varying background (.

e However, we can avoid this by selecting pairs of points using

the invariant distance z =y e . The z-dependence of the
correlator. _

(COC(x +2e7¢))

is then a background-independent and hence IR-safe object.

related to Urakawa/Tanaka '10 7



e |ts Fourier transform is our desired IR-safe power spectrum:

PR ~ 1 [ & (et 2e7)).

z

e The original IR-sensitive power spectrum follows as

Pk) ~ K / e (C(x) C(x +))
y

N~ / e (¢(x) C(x + (ve)e ™))
y

~ (Pke ™))

in agreement with our previous result.



Tensor modes

Our IR-safe power spectrum immediately generalizes to the
case of background tensor modes:

PO(K) ~ K3 / e (C(x)C(x + e S (e722)))

z

As before, the length of z is the invariant distance between
the two points in the correlator.

The calculation of the IR-sensitive spectrum produces an extra

term since
/d3(e_5e_7/2z) = e_3f/d3z.

The factor k% is not automatically changed to (e~7/2k)3.



e We find
Pe(k) = ( (e77/2k)=> P2e772k) ),

where k is a unit-vector in k-direction.

e Expanding in leading non-trivial order in the background (and
assuming (¢) = 0 for simplicity) gives

_ 2
Pet) = (1= 557 g + 3@ g ) PRGO

(in agreement with Giddings/Sloth)

e The two terms are of the same order (tr2 is more slow-roll
suppressed, but comes with only one derivative in In k).



Higher correlation functions

We could try to generalize the ‘almost scale-invariant’
spectrum by writing

Py (k- k) ~ k3”/ ' / gilkyttkan) (¢ ()¢ (x4y1) - - - C(x+ym))

1 Yn

However, it is not clear which particular combination of
ki...k, one should use to define the prefactor k3.

This is not irrelevant since factors e will get tangled up in
this prefactor.

Hence, we choose to write the general formula for the
higher-order analogue of the conventional spectrum

P(k) ~ P(k)/k®.



e However, given these preliminaries, the generalization of our
formalism is completely straightforward.

e The IR-safe spectrum is defined as

PO (ky.w-kn) ~ / 'lei(klz”"'“"z")<<(x)c(x+y1) ()

where
vi=yi(z.(,7) = e %z,

In words:

e Measure the correlation function in terms of invariant
distances, characterized by a set of vectors z;.

e Then Fourier transform (going from z; to k;).



e Then, by a straightforward generalization of the previous
calculations, one finds

Pny(Kt s e kn) = { €37 PO (77 2ky ., e CT/%k,) )

e The prefactor e3¢ comes from the naive scaling P(On) ~ k3,

e This can be directly applied to observables measuring
non-Gaussianity, such as fy;.



Example:
Tensor mode effect on fy; in the squeezed limit

e Using ‘consistency relations’ (Maldacena '02), we find

(k)= PK) it () P2)) )

12

—fue(ki, ko) = = _
5 ( (k)3 PAUKY) ) ( (k)73 PR(KS) )
where k' = e 7/2k.

e At leading order in the background 72 this gives

1
(ke ko) = |1 — —= (72

d
dl k:| fNL(kl’k2)



Explicit averaging over the background

We want to calculate quantities of the type (f({(x))).

In principle, we have to average ((x) over the (large) observed
region of size L.

However, this is equivalent to an ensemble average of ((0)
with IR cutoff L.

Thus, we are dealing with a sum of Gaussian random variables

oy (N,H)(q)
<©) /1/L<<q<<k g3/ %

which is again a Gaussian random variable of width

2 _ 72\ (NH)?(q)
= /1/L<<q<<k g '



e Thus, all we need is the single integral

dCe T (D).

1
oV 2T

e For example,

Pe(k) = / dZe S 127 P(ke ),

oV 2w

where Pg(k) is the (almost scale-invariant) tree-level
spectrum (N,H)?, written as a function of k.

e The generalization to tensor modes, though conceptually
straightforward, is complicated by the matrix structure of %
and the different independent polarizations involved.



Important conceptual comment:

In fact, the there exists a value kp,,x corresponding to modes
that never left the horizon.

For very large L, and for k sufficiently close to kmax, the
region where ke ¢ > kpax is relevant in the (-integral.

We need to assume that the very late observer is intelligent
enough to exclude such regions from his averaging.

Technically, this is implemented as
/ d¢ e—§2/20—273g(ke—5)
C_min:_ In(kmax/k)

While this is physically harmless, it clearly affects the
convergence properties of the (-expansion



Summary

An interesting class of IR divergences comes from
long-wavelength background modes.

This effect seen be seen from an (appropriately modified)
ON formalism as well as from the ‘geometry of the reheating
surface’.

One can define IR-safe correlators.

One can return to usual correlators and calculate their
IR-sensitive corrections (both scalar and tensor) very explicitly.

The generalization to multiple scalar fields is interesting but
(probably) conceptually straightforward.

Are there observable effects (given our relatively small L)?

Are there interesting implications for quantum gravity in
de Sitter space?



