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Outline

• 5d and heterotic gauge-Higgs unification

• Importance of the Chern-Simons term

• Phenomenology in a simplified setting

• Towards a complete model



Motivation

• Our main Paradigm: SUSY GUTs

• Simplest explicit models:

5d or 6d Orbifold GUTs with compactification scale ∼ MGUT

• Natural microscopic origin: Heterotic orbifold models

Motivation in this context: String-scale/GUT-scale problem;

‘solved’ by using anisotropic orbifolds

• Fundamental problem of ‘conventional’ orbifold GUTs:

few extra predictions (beyond those of old-fashioned
SUSY-GUT framework)

• Our main point:

There may be simple and testable consequences for SUSY
breaking in the Gauge/Higgs sector + natural way to generate
µ/Bµ



SUSY Gauge-Higgs Unification

(cf. Burdman/Nomura 2003)

• 5d SU(6) super-Yang-Mills theory on S1/(Z2 × Z ′
2)

• Gauge-symmetry broken at boundaries to SM
(MSSM field content below compactification scale)

• Field content in N = 1 language: vector V + chiral adjoint Φ

• Φ in 35 of SU(6); 35 = 24 + 5 + 5̄ + 1; 5 = 3 + 2 and 5̄ = 3̄ + 2̄

• Only the 2 and 2̄ survive boundary-breaking

• Matter in bulk, Yukawas from gauge couplings (details later)



Soft terms from radion superfield

(cf. Choi/Haba/Jeong/Okumura/Shimizu/Yamaguchi 2004)

• T = R + iA5; Due to no-scale structure FT is naturally the
dominant source for SUSY-breaking in many concrete models

• The 5d action in terms of N = 1 superfields,
coupled to radion à la Marti/Pomarol, contains terms∫

d2θ T trW 2 ,

∫
d4θ ϕ̄ϕ

tr(Φ + Φ̄)2

T + T̄

(ϕ is ‘chiral compensator’; generically Fϕ 6= 0 after T is stabilized)

• For H1,H2 ⊂ Φ one finds:∫
d4θ ϕ̄ϕ

(H̄1 + H2)(H̄2 + H1)
T + T̄



• One immediately reads off:

M1/2 =
F̄T

2R
and µ = F̄ϕ −

F̄T

2R

• In addition, for the Higgs mass parameters in

V = m2
1|H1|2 + m2

2|H2|2 + m3
3(H2H1 + h.c.) ,

one finds:

m2
1 = m2

2 = m2
3 = |Fϕ|2 −

FϕF̄T + h.c.
2R

(note our conventions: m2
1,2 ≡ |µ|2 + m2

H1,2
and m2

3 ≡ Bµ )

• This is marginally inconsistent with the EWSB conditions

m2
1m

2
2 < (m2

3)
2 and 2m2

3 < m2
1 + m2

2 ,

which can however be fulfilled after RG running.



Structural Origin of the above

‘GHU boundary conditions’

• Crucial point: H1 and H2 enter the Kähler potential
only in the combinations (H1 + H̄2) and (H̄1 + H2)

• Reason: Φ enters the Kähler potential
only in combination (Φ + Φ̄)

• Reason: Φ = Σ + iA5; where A5 should cancel in lowest
component to avoid non-derivative couplings



Heterotic String Motivation

• These ‘GHU boundary conditions’ are also found in some
heterotic orbifold models

(cf. Antoniadis/Gava/Narain/Taylor 1994
Lopes Cardoso/Lüst/Mohaupt 1994
Brignole/Ibanez/Munoz 1995-1997)

• In more detail: The Kähler potential for matter fields A,B is

K = Y AĀ + Ỹ BB̄ + (ZAB + h.c.)

where Y, Ỹ , Z are functions of the moduli.

• In some cases one has explicitly

Y = Ỹ = Z =
1

(T + T̄ )(U + Ū)

which implies the required structure (A + B̄)(Ā + B)



• Specifically, the conditions are:

A and B are untwisted matter fields associated with
a common complex plane.

This plane possesses a complex structure modulus, U .

• Our present understanding of these conditions:

The ‘common plane’ allows for a 6d limit in which A and B

are 6d gauge fields.

The presence of U allows for a 5d limit, such that A and B

become part of the chiral adjoint Φ.

The previous 5d argument explains the special structure of
the Kähler potential (even if we are not in this particular
5d limit in moduli space)

• This would be interesting to understand in more detail. . .



Summary so far:

• Interesting specific class of high-scale boundary conditions
related to GHU

• Motivation in 5d and some more general heterotic models

• Unfortunately: Choi et al. find that no reasonable
phenomenology emerges except in some extremely
fine-tuned corner of parameter space

• Their solution: Include extra SUSY-breaking sources
(F -terms of other fields)

• Unsatisfactory? . . .



Our suggestion:

(developing and correcting previous work
with March-Russell and Ziegler)

• Include the effects of the 5d Chern-Simons term and
perform a state-of-the-art phenomenological analysis
(using SuSpect)

• The SUSY extension of the CS-term A ∧ F ∧ F is
generically present in 5d SYM theories

• In compactifications on an interval its coefficient is fixed
by boundary-anomaly-cancellation

• when coming from d > 5, it is induced at 1-loop

(cf. Seiberg 1996 and Intriligator/Morrison/Seiberg 1997)

• Its effect softens, in particular, the strict relation between
gaugino mass and Higgs mass parameters



• The SUSY CS-term corrects∫
d2θ T trW 2 ,

∫
d4θ ϕ̄ϕ

tr(Φ + Φ̄)2

T + T̄

by ∫
d2θ trΦW 2 ,

∫
d4θ ϕ̄ϕ

tr(Φ + Φ̄)3

(T + T̄ )2

• Being a higher-dimension operator, it is only important if
〈Φ〉 6= 0.

• This is rather generic. The simplest realization in our
setting is

SU(6) → U(6) and 〈Φ〉 = v 1



• Combining the CS-term-coefficient c, the VEV v

and the 5d gauge coupling g5 in the dimensionless
parameter c′, we now have:

M1/2 =
F

T

2R

1
1 + c′

µ = F̄ ϕ̄ − F̄T

2R

1 + 2c′

1 + c′

m2
i = |Fϕ|2 − (FϕF

T
+ h.c.)

2R

1 + 2c′

1 + c′
+
|FT |2

(2R)2
2c′

2

(1 + c′)2
.



• For a first phenomenological analysis, we neglect all matter
soft terms (except for the top-quark) and use yt ' gGUT

• This corresponds to realizing Q3 and U3 as bulk fields with
flat profile

• All other matter fields are brane fields

• Thus, T enters only via the Kähler-coefficients

YQ3 = YU3 =
T + T̄

2R
.

• From this, we find

m2
Q3

= m2
U3

=
∣∣∣∣FT

2R

∣∣∣∣2 and At =
FT

2R
· 1
1 + c′

.



Challenges in the implementation

of GHU boundary conditions:

• Usual procedure: tanβ and MZ as low-scale input;
µ and Bµ are computed from EWSB conditions
(iterative running between low and high scale required)

• This does not work in GHU since µ, Bµ, M1/2 and m2
H1,2

at
the high scale are not independent



Simple solution:

• Implement m2
H1,2

= Bµ− |µ|2 at the GUT scale in every step
of the iteration.

• The input parameters are MZ and tanβ at the low scale as
well as M1/2 at the high scale.

• After convergence, one obtains certain values for µ and Bµ.

• Finally, M1/2, µ and Bµ can be translated
into FT , Fφ and c′.

• This allows to indirectly scan the space of these
fundamental parameters.



Electroweak symmetry breaking
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F -term ratios
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Importance of Chern-Simons term
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Importance of Chern-Simons term
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Importance of Chern-Simons term
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Gaugino mass vs. tanβ

5 10 15 20
100

200

300

400

500

600

700

800

900

1000

tanβ

M
1
/
2

[G
eV

]

µ > 0, εBµ = + 1



Neutralino and slepton masses

200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

M1/2 [GeV]

M
as

se
s

[G
eV

]
µ > 0, εBµ = +1



Neutralino and slepton masses
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Realistic sfermion soft terms

• Neglecting the bottom Yukawa is not justified;
yt ' gGUT is not valid with sufficient precision

• To address this, we need to go into the details of the
Burdman-Nomura model:

Quarks come from bulk hypermultiplets in the
20 and 15 of SU(6)

Yukawas come from gauge couplings and have the structure

Q20U20Hu + Q15D15Hd ,

with two independent doublets.

This problem is solved by mixing Q20 with Q15 via a brane
field, such that only one (mixed) doublet remains massless.



• Resulting Kähler-coefficients for 3rd generation quark fields:

(taking into account bulk-profiles, which is now unavoidable)

YU =
1

2|Mu|

(
1− e−π(T+T )|Mu|

)
, YD =

1
2|Md|

(
1− e−π(T+T )|Md|

)

YQ =
1

2|Mu|

(
1− e−π(T+T )|Mu|

)
sin2(φQ)+

1
2|Md|

(
1− e−π(T+T )|Md|

)
cos2(φQ)

• The mixing angle and the two bulk masses determine the
Yukawa couplings; one extra parameter is thus introduced

• The numerical analysis is in progress. While the details of
the spectrum will be affected, we expect that the large,
phenomenologically viable regions remain intact.



Summary

• Gauge-Higgs unification is generic in heterotic orbifold
models

• An effective 5d setting, motivated by the
string-scale/GUT-scale problem allows for predictions
for soft masses and µ term

• The 5d Chern-Simons term (which is generically present)
together with a VEV of the chiral adjoint makes this setting
phenomenologically viable

• Phenomenology resembles ‘Higgs-exempt no-scale models’

• Preliminary: A realistic phenomenology results rather
naturally

• Preliminary: Small mass differences between neutralino and
sleptons appear to be generic


