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The 2-loop problem of SUSY GUTs

• With α3 = 0.118, the numbers look perfect at 1-loop:
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• At 2-loop, one finds

∆

(
2π

α3(mZ )

)
2−loop

= −5.4 ,

which is not easy to compensate by thresholds. For example,
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2-loop problem of SUSY GUTs (continued)

• Another possibility are SUSY thresholds:

∆
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Langacker, Polonsky ’92. . . ’95
Carena, Pokorski, Wagner ’93

• In general, it is difficult to get a sufficiently large correction
since gluinos tend to be heavy

• However, if one is willing to use several competing
contributions to gaugino masses, precision unification can
be realized

Raby, Ratz, Schmidt-Hoberg ’09



2-loop effect in the holomorphic approach

• Let us understand the origin of the problem in detail.

• It is covenient to use a holomorphic Wilsonian action,
where gauge couplings run only at 1-loop.

NSVZ ’83. . . ’86; Shifman ’96
Arkani-Hamed, Murayama ’97

• One gets a low-energy action with (1-loop) gauge couplings
and (all-loop) Z -factors for matter fields

• To compare with data, one converts to the canonical scheme
(accounting for vector and Konishi anomaly)

• The resulting 2-loop correction to the α3 prediction is

∆
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2-loop effects in the holomorphic approach
(continued)

• The required 1-loop Z factors are known analytically, e.g.

ZD =
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αGUT
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)−2/99(αGUT

α3

)8/9

.

• Putting everything together, one finds
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• Thus, we just need to change one of those Z factors
contributing negatively from Z < 1 to Z � 1.



Extra Yukawa couplings

• The Z factors (assumed to be O(1) at the GUT scale) are
driven to smaller values by gauge interactions

• Yukawas have the opposite effect, but even the top
contribution is far too small

• However, we can introduce extra multiplets (5 + 5 or
10 + 10) with extra Yukawa couplings

• An independent motivation of extra multiplets is the
messenger sector of gauge mediation

• Another motivation is the fine tuning of the MSSM, which
can be improved using precisely the extra Yukawa couplings
we need

Moroi, Okada ’91
Babu, Gogoladze, Rehman, Shafi ’08
Martin ’09
Graham, Ismail, Rajendran, Saraswat ’09 . . .

see also: Barbieri, Hall, Papaioannou, Pappadopulo, Rychkov ’07



An analytically calculable model

• Extra multiplets do not affect the 1-loop prediction for α3

• The valua of αGUT grows with n = n5+5 + 3n10+10

• If the mass of the extra multiplets is low, M ∼ mZ , one
formally finds αGUT = 1 for n = 4.45 (corresponding to n = 5
and some M > mZ )

• This enhances the 2-loop correction from −5.4 to −7.9

• Let us assume strong GUT coupling and at least one pair
10 + 10 with

W ⊃ κQeUeHu + κ̄Q̄eŪeHd

• The Higgs Z -factor is corrected by ZY
H with

2π
d ln ZY

H

dt
= −3ακ



Analytically calculable model (continued)

• The extra Yukawa obeys
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d lnακ

dt
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• For strong GUT coupling, at all lower scales we have
approximately
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• This gives an RGE for ακ/α3 with a fixed point:
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Analytically calculable model (continued)



Analytically calculable model (continued)

• If ακ is also large at MGUT, the fixed point regime
ακ = 1.4α3 is quickly reached

• The Yukawa correction to the Higgs Z factor can then be
obtained by simple integration:

ln ZY
H (mZ ) = 2.8 ln(αGUT/α3(mZ )) = 6.0 .

• This gives the ‘Yukawa correction’

∆
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H (mZ ) = 7.8 ,

precisely compensating the gauge-2-loop correction



On the strong-coupling assumption

• Going to strong(ish) GUT coupling has been discussed before

Kolda, March-Russell ’96
Ghilencea, Lanzagorta, Ross ’97
Amelino-Camelia, Ghilencea, Ross ’98
. . .
J.L. Jones ’08

• Calculability is clearly a critical issue

• We argue against ’precision loss’ using the stringy relation

fi (S ,T ) = kiS + ∆i (T )

Nilles ’86

• Based on this, one can shift S to strong coupling without
enhancing threshold effects



On the strong coupling assumption (continued)

• However, non-perturbative effects can provide corrections

∼ Ci exp(−aiS)

• Thus, we probably need at least the exponential of
−4π/αGUT to remain small

• This may be (at least marginally) consistent with our
‘analytical model’ discussed above



Weakly coupled scenarios

• Let us finally dump the strong-coupling assumption and
analytical calculability

• We now do a ‘proper job’ solving (Yukawa) RGEs numerically,
varying n and M and including the top effect

• For example, with n = 4 and M = 500 GeV we get
αGUT = 0.23

• Using ακ(MGUT) = 0.9, we find (2π/α3) = 52.0

• If we are willing to go up to ακ(MGUT) = 6, we find
(2π/α3) = 53.2

• Using n = 5 and M = 250 TeV, very similar numbers are
obtained



Weakly coupled scenarios (continued)

• Finally, for n = 6, we can have two pairs 10 + 10 and double
the Yukawa effect.

• However, except for the increased mass scale of the extra
multiplets, M = 17× 103 TeV, the α3 predictions remain
roughly unchanged.

• Thus, quite generically, scenarios with large GUT coupling and
large extra Yukawa couplings (but with both couplings still
perturbative) bring the α3 prediction in line with experiment

• Interestingly, they can not move it ‘beyond’ the experimental
value



Summary

• Extra GUT multiplets can be used to make the GUT coupling
stronger without sacrificing precision

• Large extra top-like Yukawa couplings to the MSSM Higgs
fields bring the α3 prediction in line with experiment

• The actual ‘strong coupling regime’ is distinguished by (easy)
analytical calculability

• It may also be ‘natural’ (e.g. in the string theory ‘landscape’)

• However, the numerical effect does not rely on the strongly
coupled regime


