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original part based mostly on work with Xin Gao and Daniel Junghans

(includes also comments on earlier work with Hamada/Shiu/Soler )

Outline

• The difficulty of realizing de Sitter in string theory.

• KKLT and and some of its potential problem.

• The Singular-Bulk Problem of KKLT.
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String Compactifications

• String theory provides an (essentially unique) and
UV-complete field theory in 10d:

S =

∫
10
R− |Fµνρ|2 + · · ·

• At the very least, this is a useful toy-model for a well-defined
gravitational theory.

• One may go for more by compactifying on Calabi-Yaus
(6d spaces with vanishing Ricci tensor).

• One ends up with

(A) unrealistic moduli-space field theories (N = 2 SUSY)

(B) very flat and poorly controlles field spaces (N = 1 SUSY)
[it remains unclear how Λ ∼ 10−120 can occur].
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String compactifications: flux landscape

• The extra ingredient of fluxes induces an
exponentially large landscape of discrete solutions.

Bousso/Polchinski ’00, Giddings/Kachru/Polchinski ’01 (GKP)
Kachru/Kallosh/Linde/Trivedi ’03 (KKLT), Denef/Douglas ’04
Balasubramanian/Berglund/Conlon/Quevedo ’05 (LVS)

• Key to the historical number 10500 (by now rather 10300.000)
is not the abundance of Calabi-Yaus (∼ 109), but the discrete
flux choice: ∮

3−cycle
Fµνρ ∈ Z
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Landscape vs. Swampland

• Given this abundance of solutions, one must wonder whether
‘anything goes’ in string compactification.

• This leads to the Landscape/Swampland program:
Vafa’ 05; Ooguri/Vafa ’06

• I will not discuss the many interesting aspects of this
(no global symmetries, field-excursions, weak gravity, ...)
but focus on de Sitter:
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De Sitter swampland conjectures

• One possible constraint is clearly Λcosm. ≤ 0.

• Indeed, a longstanding unease about the status of de Sitter
space in quantum gravity exists.

Woodard, Danielsson, Van Riet, Bena, Grana, Sethi, Dvali, ...

• More recently, concrete formulations of varying strength have
been considered within the Swampland program

(e.g. V ′/V > O(1) or V ′′/V < −O(1))

Danielsson/Van Riet
Obied/Ooguri/Spodyneiko/Vafa
Garg/Krishnan, Andriot
Ooguri/Palti/Shiu/Vafa ’18

(see also further related work by Andriot, Cirbiori et al. ...)
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Problems with de Sitter in string compactifications

• Let us briefly pause to explain one of the reasons why realizing
de Sitter is difficult.

• The generic result of a compactification with volume V
(and some positive-energy source in the compact space) is

L ∼ V
[
R4 −

(∂V)2

V2
− E

]
.

• After Weyl-rescaling to the Einstein frame and introducing the
canonical field ϕ = ln(V), one finds

L ∼
[
R4 − (∂ϕ)2 − E e−ϕ

]
.

• The exponent is usually O(1), so the simplest
compactifications lead to steep potentials: |V ′|/V ∼ O(1).
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String compactifications: flux landscape

• Combining two such runaway potentials with different sign
allows in principle for AdS solutions.

• At least 3 potential terms with different falloff and appropriate
coefficients are needed to get dS.

If all parameters involved are O(1), this can never happen in
parametric control.

Dine/Seiberg ’85
Ooguri/Palti/Shiu/Vafa ’18
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However, with some tuning of fluxes effective small and large
parameters can be realized.

The earliest such scenario for realizing dS was

KKLT

Kachru/Kallosh/Linde/Trivedi ’03

An alternative is the ‘large volume scenario’ or LVS

Balasubramanian/Berglund/Conlon/Quevedo ’05

———————

We will first recall how KKLT works and discuss recent criticism by

Moritz/Retolaza/Westphal ’17

which was historically important in the above debate.

But then we will come to a rather different concern, which at the
moment appears to threaten KKLT more seriously ....
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(2-slide reminder of) KKLT

• CY with all complex-structure moduli fixed by fluxes;
The only field left: Kahler modulus T = τ + ic with τ ∼ V2/3.

• K = −3 ln(T + T ) ; fluxes give W = W0 = const.,

⇒ V ≡ 0 (‘no scale’) .

• Gaugino condensation on D7 brane stack: W = W0 + e−T .

• Small uplift by D3-brane

in a warped throat:

V → V + c/τ2.
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KKLT

• The scalar potential is changed first to SUSY-AdS, then to an
‘uplifted’ meta-stable de Sitter potential:

• A longstanding critical debate has targeted the metastability
of the D3 in view of flux-backreaction.

(My take on this is that metastability remains plausible.)

Bena, Grana, Danielsson, Van Riet, ....
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KKLT under attack

Moritz/Retolaza/Westphal ’17
Gautason/Van Hemelryck/Van Riet ’18

• Recent criticism was rooted in a possibly too simplistic
treatment of D7-gaugino–bulk-coupling:

L10 ⊃ |G3|2 + G3 · Ω3 〈λλ〉 δD7 .

Camara/Ibanez/Uranga ’04, Koerber/Martucci ’07
Baumann/Dymarsky/Klebanov/Maldacena/McAllister ’06
Heidenreich/McAllister/Torroba ’10

• It is clear what to expect:
G3 backreacts, becoming itself singular at the brane.

• Plugging this back into the action,
one gets a divergent effect of type (δD7)2.

• Now anything can happen....
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KKLT rescued

Hamada/AH/Shiu/Soler ’18,’19; Kallosh ’19; Carta/Moritz/Westphal ’19

• Singular gaugino effects have been observed before,
in other string models.

Horava/Witten ’96

• It has been shown that a highly singular 〈λλ〉2-term saves the
day by ‘completing the square’. Applied to our case:

L10 ⊃
∣∣∣G3 + Ω3 〈λλ〉 δD7

∣∣∣2 .
• Very roughly speaking, one now writes G3 = Gflux

3 + δG3

and lets the second term cancel (most of) the δ-function.

The result is (very roughly):

L10 ⊃
∣∣∣Gflux

3 + 〈λλ〉
∣∣∣2 →

∣∣∣DTW0 + ∂T e−T
∣∣∣2 .
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The perfect square structure in M-theory

• The established part of the story is in M-theory
(with x11 compactified on S1/Z2). There, one has

S ∼ −
∫

11

(
G 2

4 − δ(x11)(G4)ABC 11 j
ABC

)
,

where jABC ∼ λ ΓABCλ.

• It is well-known that the divergence problem is resolved by the
proposal (enforced by SUSY)

Horava/Witten

S ∼ −
∫

11

(
G4 −

1

2
δ(x11) j

)2

.

• Our proposal basically describes how an analogous quartic
gaugino term on the brane must be added in type IIB.

(cf. Hamada/AH/Shiu/Soler ’18/’19 for details)
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In summary:

10d perfect square structure leads to
4d SUGRA perfect square structure
and to KKLT, including possible uplift.

eKKT T
∣∣∣DT (W0 + e−T )

∣∣2
Recent related work by other groups

agreement with Carta/Moritz/Westphal,
still (partial) disagreement with Gautason/Van Hemelryck/Van Riet/Venken

Using Generalized Complex Geometry, the AdS parameter can be
related to a parameter in 10d SUSY conditions.
⇒ fully 10d-local check of pre-uplift KKLT

Bena/Grana/Kovensky/Retolaza

Related attempt of component-level check w/o SUSY:
Kachru/Kim/McAllister/Zimet

However, non-local D7 action introduced ad hoc;
divergence cancellation in G3 kinetic term remains unclear.
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The advertise new concern starts with the

The Throat Glueing Problem

Carta/Moritz/Westphal ’19
• Recall basic parametrics of KKLT:

VAdS ∼ −e−4πRe(T ) vs. VUplift ∼ e−8πK/3gs M .

(Here K and M are the flux numbers of the two 3-cycles of
the KS throat.)

• For a metastable uplift to dS, the two potentials must match:

⇒ Re(T ) ' 2K/3gsM .

• At the same time, the throat carries N = KM units of D3
charge, giving
it a radius R4

throat ' gsN .
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Throat Glueing Problem (continued)

• However, at least most naively, gs Re(T ) ∼ R4
CY and the

standard picture

implies R4
throat < R4

CY .

• With the previous estimates, this leads to the problematic
inequality

gsN . K/M

or (using K = N/M)

O(1) . 1/gsM
2 .
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Throat Glueing Problem (continued)

• The problem is that gsM ' R2
S3 & 1

KS, KPV, Klebanov/Herzog/Ouyang ’01

for supergravity control and M & 12

KPV (see also Bena/Dudas/Grana/Lüst,
Blumenhagen/Kläwer/Schlechter)

for metastability of the anti-D3-brane.

• Thus, the standard picture of a small throat glued into the
large bulk of a CY can not be maintained.

(See App. of our paper for the (2π)-factors etc.

It turns out these do not resolve the problem gsM
2 . 1, which will

remain central throughout the talk.)
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Is the Throat Glueing Problem deadly ?

• Not obviously, since a priori the warp factor h(y) of

ds2
10 = h(y)−1/2ηµνdx

µdxν + h(y)1/2g̃mndy
mdyn

is just some function on the CY.

• The Kahler modulus corresponds to h(y)→ h(y) + const.
It is a flat direction ‘at the level of GKP’. So we may simply
make the bulk smaller than the throat!
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The singular-bulk problem

• An actual problem is not that the geometry defies our
standard intuition, it is that the CY may be forced into a
singular regime, since h < 0.

• The danger of growing singualrities as h→ h − const. has
already been discussed in the Appednix of Carta et a;., but
without turning this into a quantitative problem for KKLT.

• The goal of the rest of the talk is exactly this:

Demonstrate that, generically, the regime of KKLT is
enforcing h < 0 in a large portion of the CY geometry.
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The singular-bulk problem (continued)

• Before starting, let us recall the standard behavior of h near
D3-branes/O3-planes:

h(y) :

• The string-sized negative regions near O3s are not a problem

• Also having many O3s is a priori not a problem as long they
are scattered, each with it’s small negative region.

• The bulk singularity problem arises from the ‘macroscopic’
behaviour of h(y).
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The singular-bulk problem (continued)

• For quantifying the problem, a key insight is that the
warped E3 size VΣ determines the exponential effect:

Re(T ) ∼ N/gsM
2 ⇒ VΣ ∼ N/M2

with

VΣ =

∫
Σ

√
g̃ h(y) = ṼΣ 〈 h 〉Σ .

• W.l.o.g., we use a CY such that Ṽ =
∫

CY

√
g̃ = 1.

Hence ṼΣ is an O(1) number.
⇒ We are constraining the warp factor on Σ:

〈 h 〉Σ ∼ N/M2ṼΣ ∼ N/M2 .
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The singular-bulk problem (continued)

• In summary, for a large part of the E3 locus Σ we have

h . N/M2 .

• We also know from GKP that h represent a form of
‘electrostatic potential’ for the D3 charge density on the CY:

−∇̃2h = gs ρ̃D3 .

Our normalization is such that ρ̃D3 is a CY-metric δ-function
for a single D3 brane.

• We see that h is a compact-space Green’s function for a
charge distribution of

gsN units of positive charge, localized at conifold

−gsN units of negative charge, scattered in the CY.
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The singular-bulk problem (continued)

• If the parameter gsN were O(1), we would have |∂̃h| ∼ 1.

(The details of the function are fixed by geometry and charge
distribution. An additive constant is undetermined.)

• But in our case the variation is scaled up by gsN � 1.
At the same time h is bounded on the E3: h . N/M2.

⇒ |∂̃h|
h

& gsM
2 & M � 1

Now, by Taylor expanding at a point y0 of the E3,

h(y0 + δy) ≈ h(y0) + ∂mh(y0) δym ,

we see that h runs negative near the E3: |δ̃y | . 1/gsM
2.
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The singular-bulk problem (continued)

⇒

• The argument also works if δy is a brane-parallel direction,
making much of the E3 singular:

• Alternative view of the problem:

R6 = h−5/2|∂̃h|2 − 3
2h
−3/2∇̃2h ⇒ R6 & g2

s M
5/
√
N

Imposing gsM & 1, M & 12 and R6 . 1 implies N & 3 · 106.

This exceeds the largest know tadpole of 7 · 104.
Taylor/Wang ’15

24/35



Singular-bulk problem with coarse-grained warp factor

• One may think in terms of a coarse-grained warp factor
(cf. the coarse-grained electrostatic potential in a plasma).

• For example:

hc(y) =

∫
d6y ′ h(y ′) exp(−|y − y ′|2/d2)∫

d6y ′ exp(−|y − y ′|2/d2)

• One can show that
hc closely follows the
maxima of h.

• It becomes apparent
that even hc goes negative,
so the problem is distinct
from O3-singularities
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Singular-bulk problem in a toy model

• To develop some intuition, let us consider a simple toy model.

• Replace the CY by an S6, with the throat at the north pole.

• Let the (O3-plane) negative charge be scattered/smeared
homogeneously.

• The E3 will be modelled as an S4 positioned at some fixed
altitude ϕ.
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Singular-bulk problem in a toy model (continued)

• h(ϕ) is naturally very large near the north pole.

• It has some smooth, non-constant behaviour in the bulk.

The additive constant is adjusted to ensure the
KKLT-value at the E3 position.

As a result, h(ϕ) goes negative
close to the E3 and stays negative
throughout the south pole region.
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Singular-bulk problem in a toy model (continued)

• Moving the E3 to the south pole (ϕ = π) is presumably only
possible in the toy model since the E3 cycle is trivial.

• A more generally useful option may be the cancellation of the
tadpole close to the throat.

This lets h(ϕ) be constant everywhere to the
right (‘more south’) of the O3-location

If the E3 locus is in this constant-h
region, everything may be fine.
Clearly, this requires very special
CY-orientifolds!
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Escape routes

• One option, suggested by the toy model, is a very special
arrangement of the O3s (or the curved O7/D7s).
Very challenging to study this in proper CY geometries!

• Another option is to the observation that the problematic
‘small parameter’ changes if the E3 is replaced by gaugino
condensation:

1/gsM
2 → Nc/gsM

2 .

• However, Nc � 1 appears to always come with h1,1 � 1. The
latter is problematic, as we will see in a moment.

Louis/Rummel/Valandro/Westphal ’12, Carta/Moritz/Westphal ’19
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Escape routes (continued)

• At first sight, making h1,1 large appears promising even before
thinking about Nc � 1.

• The reason is that, if we do not assume ṼΣ ∼ 1, then the
problematic small parameter changes as

1/gsM
2 → 1/gsM

2ṼΣ .

(Recall that Ṽ = 1 by convention.)

• This could help since ṼΣ � Ṽ is the natural expectation in
CYs with h1,1 � 1.

• Using volumes measured in string units, one explicitly needs:

τΣ/V2/3 . 1/gsM
2

for all 4-cycles Σ.
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Escape routes – problems at large h1,1

• However, according to an analysis of a large class of CYs,
there is a problem due to the h1,1 scaling of various volumes:

Demirtas/Long/McAllister/Stillman ’18

• If the curves are kept large enough for SUGRA control, then
surfaces and the volume scale as

τ ∼ (h1,1)3.2···4.3 , V ∼ (h1,1)6.2···7.2 (h1,1 � 1) .

• Combining this with τ/V2/3 . 1/gsM
2 and τ∼N/gsM

2 gives

N/gsM
2 & (h1,1)3.2 & (gsM

2)4.8

• With the familiar bound on gsM
2,

this enforces N & 2 · 106. Too large!
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Escape routes – combining large Nc and large h1,1

• Now let us, in addition, use large-Nc gaugino condensation
instead of instantons. We accept the empirical relation

Nc ∼ βh1,1 at h1,1 � 1 (and β ∼ O(1) ) .

Louis/Rummel/Valandro/Westphal ’12

• Then the previous problematic chain of inequalities turns into

N βh1,1

gsM2
& (h1,1)3.2 &

(
gsM

2

βh1,1

)4.8

.

• The outcome for N changes:

N ∼ (gsM
2)5.8 & 2 · 106 ⇒ N ∼ (gsM

2/β)2.3 .

• Thus, numerically this escape route works. But we have here
assumed a 7-brane gauge group with Nc ∼ βh1,1 on every
4-cycle! Is that possible?
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Further control issue: Topology too complicated?

• Because N � N/gsM
2 ∼ τΣ, parametric control needs a very

large tadpole. In the best-understood cases, this comes with
complicated topology

⇒ Too many ‘cycles per volume’.

• In F-theory

24N = χ(Y ) = 6(8 + h1,1(Y ) + h3,1(Y )− h2,1(Y )) .

Klemm/Lian/Roan/Yau ’98

⇒ Need large h1,1(Y ) or large h3,1(Y ) .

In the first case, use h1,1(Y ) = h1,1
+ (X ) + 1.

• Thus, we consider CYs with h1,1 ∼ N. But this clashes with
the previous relation τΣ � N and τΣ ∼ (h1,1)3.2 ∼ N3.2.

Demirtas/Long/McAllister/Stillman ’18

• The route of large h3,1(Y ) also looks complicated but not
completely excluded...
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Summary / Conclusions

• One should not simply believe that metastable stringy de
Sitter is possible/impossible but try to demonstrate it.

• Concerning the recent ‘10d-line-of-attack’, KKLT appears to
be in better shape now than two years ago.

• However, it may fall victim to the bulk singularity problem
discussed above.

• The escape routes appear complicated and non-generic, but
that does not make them hopeless. Also, the LVS does not
suffer from this issue.

• In parallel to (dis)proving KKLT/LVS in more and more detail,
we should try to get stringy quintessence to work.

• This is not easy....(cf. recent paper on the F -term problem)
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An Aside on Quintessence:

• It is conceivable that all dS constructions will fail in the end.

• Quintessence is a natural way out, but this is also difficult..

see e.g. Cicoli/Pedro/Tasinato ’12
(also: Cicoli/Burgess/Quevedo ’11)

• In particular, one faces an F -Term Problem:
AH/Skrzypek/Wittner

• Namely, one needs an extremely large volume, where
phenomenological SUSY-breaking implies:

eK |DxW |2 �
∣∣∣eK (|DTW |2 − 3|W |2)

∣∣∣
⇒ completely new scalar-potential term needed!

Selection of recent work: Cicoli/DeAlwis/Maharana/Muia/Quevedo;
Acharya/Maharana/Muia; Emelin/Tatar; Hardy/Parameswaran; · · ·
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