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0 Preliminaries

Literature

These lecture notes combine material from several sources. Some topics in these lecture notes are
treated in all books listed below; for some, a particular book or selection of books is better suited.
In this case, this will be indicated in the corresponding chapter.
In particular, you might find it useful to also read up on the topics in the following books as well
as lecture notes (available online):

• Srednicki, Quantum Field Theory

• Ryder, Quantum Field Theory

• Gelis, Quantum Field Theory

• Schwartz, Quantum Field Theory and the Standard Model

• Peskin/Schröder, Quantum Field Theory

• Nastase, Quantum Field Theory

• Fradkin, Quantum Field Theory

• There are many other books on QFT and it is often a matter of personal taste, which one is
most useful.

• Lecture notes on QFT by D. Tong (Cambridge University), A. Hebecker (Heidelberg Univer-
sity), T. Weigand (from the QFT courses at Heidelberg University)

Many topics are treated to the greatest level of depth in the QFT books by Weinberg. However,
for a first encounter with a topic, the books are usually not useful, but rather become helpful later
on, when one has already learned about a topic and wants to come back to it to learn more about
it.
There is also the book “Quantum field theory in a nutshell” by Zee, which focuses more on some
conceptual aspects rather than technical points and it can be a useful addition to the above list of
literature.

Mini-exercises

The best way to learn quantum field theory is to do calculations yourself, and think and discuss
about concepts yourself. Therefore, each lecture has at least one “mini-exercise”, which you will
work on during the lecture. This gives you the opportunity to engage more actively with the
material and notice when you have questions. You will likely not always have time to finish the
mini-exercise during class. Therefore, solutions will not only be provided on the blackboard, but
are also available in the back of the lecture notes. They will be made available in the update of
the lectures notes that will be made online after each lecture.
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1 Introduction

1.1 Motivation: Why quantum field theory?

Quantum mechanics is a non-relativistic theory. This results in a question, namely:

Ñ What happens to systems in which quantum effects and relativistic effects are important?
There is a heuristic argument that points us towards how relativistic quantum physics dif-
fers from quantum mechanics. From the standard Heisenberg uncertainty principle, one can
motivate an uncertainty relation between energy E and time t, namely ∆E∆t ě ℏ

2 . In a
relativistic setting, we can combine this with E “ mc2, which we know from special relativity.
“ñ We expect that particle number is never fixed in a system, because, for short enough
time durations, energy is not constant, but fluctuates and these fluctuations in energy trans-
late into fluctuations in particle number. We call these fluctuations “virtual” particles.
“ñ We cannot work with a wavefunction for a fixed number of particles, as we did in quan-
tum mechanics. Instead, we need a formalism in which the particle number can change in a
system over time, and in which the presence of virtual particles is accounted for.

We can also see the incompatibility between special relativity and quantum mechanics in a
different way:

Ñ Special relativity requires that two measurements that are done at spacelike separation,
must be independent in order not to violate causality. In Quantum Mechanics, independence
of measurements is encoded in commuting operators. However, the notion that spacelike
separated operators commute is not naturally built into QM.

“ñ We need to adapt our formalism.

How should the new formalism look like?
To go beyond wavefunctions for fixed numbers of particles, we need a (mathematical) quantity
that is more fundamental than particles, i.e., particles should be a derived notion.
We take inspiration from electrodynamics, because electrodynamics can be formulated in a rela-
tivistic way. At the same time, we know from the photo-electric effect, that there are particles in
electrodynamics, namely photons. Thus, it is a useful guide to point us to the type of formalism
that we should develop. Electrodynamics is a field theory, i.e., the fundamental quantity is a field,
i.e., a quantity that takes on values at each spacetime point.
From experiments, we already know that photons (the corresponding particles) are derived from
the field, in fact, they correspond to (quantized) excitations of the field. This can, e.g., be seen
in laser experiments, in which the power incident on a screen is recorded. As the intensity of the
laser is lowered, the power arrives in discrete, “quantized packages”, the photons.
In order to be compatible with special relativity, we need to build a theory which has Lorentz
invariance built into it, just like the relativistic formulation of electrodynamics has.

What will this type of theory be able to describe?

• elementary particles and their interactions, in particular the Standard Model of particle
physics.
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• any setting in which particle number is not conserved, e.g., condensed-matter-systems in
which we are interested in effective (not fundamental) excitations, such as, e.g., phonons, or
Cooper-pairs in superconductivity.

• if the energy of the system is low enough, the formalism that we are developing is even
sufficient to understand the quantum properties of gravity.

Note: in our current understanding of cosmology, the origin of all structures in the universe
(galaxies, galaxy clusters . . . ) are quantum fluctuations of the fundamental fields in the early
universe. Ultimately, we thus owe our existence to the physics of QFT!

1.2 Why learning quantum field theory is hard

Quantum field theory is not an easy subject. This has several reasons. First, the quantities that we
are dealing with are often abstract and more difficult to develop an intuitive understanding of than,
for instance, systems in classical mechanics. Second, we need to develop an entirely new formalism
to describe quantum fields, in which we bring together classical field theory and quantum theory.
In other words, we are learning a (mathematical) language in which to describe the systems that
we are interested in, and, just like with any other new language, learning it can be hard and it
takes some time until the concepts start to feel familiar and intuitive.
However, you should not feel discouraged by this or think about giving up. Rather, if you have
questions and/or doubts, bring them up with the lecturer (either after the lecture, or by email
to eichhorn@thphys.uni-heidelberg.de) or to your tutor, or to the head tutor, Zois Gyftopolous
(gyftopolous@thphys.uni-heidelberg.de). The whole team of lecturer and tutors is here to support
you in learning and understanding quantum field theory!

1.3 Why learning quantum field theory is absolutely worth it

Quantum field theory provides the framework for the most advanced and deepest understanding of
fundamental physics that we have. Therefore, it is like a key with which we can unlock fascinating
insights into elementary particles and their properties. Thus, some of the highlights that await us
this term are:

• understanding how powerful symmetries are and how we can deduce properties of elementary
particles from an understanding of the Lorentz group and how we can deduce the existence
of the electromagnetic field from thinking about symmetries

• understanding were the Pauli principle for Spin-1/2-particles comes from

• understanding why antiparticles must exist in order for causality to not be violated

• understanding that the vacuum is not a boring state of “nothing”, but is a highly non-trivial
state which results in a force between conducting plates (“Casimir force”) or the scattering of
photons off each other (unlike in classical electrodynamics, in which the equations of motion
for the gauge field are linear and electromagnetic waves do not interact)

• and much more!
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1.4 Classical field theory

We have already emphasized the role and importance of symmetries, so we will spend some more
time developing the mathematics of symmetries, namely groups and their representations. First,
however, we need to establish some of the notions that form the basis of this course, namely fields
and their classical description.

A field takes a value at each spacetime point. Examples that you may already know include

• the E- and B-field, Epx⃗, tq, Bpx⃗, tq, which are 3-vectors.

• the density in hydrodynamics, ρpx⃗, tq, which is just a one-component function.

• the gauge field Aµpx⃗, tq in electrodynamics, which is a 4-vector.

To describe their dynamics, we start from an action S, which is a functional, i.e., its argument is
a function (and it maps to the real numbers).
For instance, in the relativistic way of writing electrodynamics, we have

SrAs “
1
4

ż

d4xFµνF
µν , (1)

“

ż

d4xLED, Fµν “ BµAν ´ BνAµ.

We denote functionals with square brackets around their arguments, which are functions. LED is
the Lagrange density. It is not a functional, because it does not depend on the full function (in
this case, the field at all spacetime points), but is just a function of the spacetime-coordinates,
through its dependence on the field at a point.
To establish some of the key notions, we will use a scalar field, conventionally denoted by ϕpx⃗, tq.
An example for scalar fields relevant in nature is the Higgs field in the Standard Model; hypo-
thetical scalar fields include the inflaton field (that drives the (conjectured) inflationary phase in
the early universe), and proposals for dark matter (e.g., the axion, which is, to be more precise, a
pseudoscalar). Scalars that can be collective degrees of freedom also play a role in many condensed-
matter systems, starting from the Ising model.
The Lagrange density L depends on the field ϕpx⃗, tq and its derivatives, Bµϕpx⃗, tq, BµBνϕpx⃗, tq

. . . and is a priori completely arbitrary. We will make two assumptions:

• the Lagrange density is local, i.e., it depends on fields and their derivatives at one point and
it only depends on a finite number of derivatives. (We call this local, because a derivative
always compares a field at a point to its (infinitesimally removed) neighboring point. An
infinitely high power of derivatives thus involves fields a finite distance apart.)
This has two motivations: First, observationally, local interactions seem to describe nature
very well; e.g., in the LHC detectors, one can see that particles interact locally. Second,
non-local interaction may get into conflict with causality, because non-localities may mean
interactions at spacelike distances.

• We assume that the Lagrange density does not have higher than second derivatives in time.
The reason is Ostrogradsky’s theorem, which is a theorem in classical mechanics and states
that, (under a non-degeneracy condition), a Hamiltonian that contains higher-than-second-
order time derivatives is unbounded from below. This may- but need not!- make the the-
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ory dynamically unstable. Because this theorem implicitly underlies the formulation of La-
grangians in many settings (classical mechanics, classical field theory, quantum field theory),
we will take a closer look at it in the exercises.1

The Lagrangian
L “

ż

d3xL, (2)

is the spatial integral of the Lagrange density. We will often work with L, because it makes the
equal treatment of space and time, that we want in a relativistic theory, manifest. It is often called
“the Lagrangian” in a slight abuse of naming conventions.
L consists of two parts, a kinetic part, T , that depends on derivatives, and a potential, V ,

L “ T ´ V. (3)

We will often focus on
T “

1
2BµϕBµϕ, (4)

and
V “

1
2m

2ϕ2 ` λϕ4, (5)

where in V we assumed that we can Taylor-expand V pϕq around a minimum ϕ0 and we can set
ϕ0 “ 0 and V pϕ0q “ 0 without loss of generality. We further assume a symmetry ϕ Ñ ´ϕ, so
that there is no ϕ3 present, which would render V pϕq unbounded from below. We call m the
mass, because we will see that the equations of motion imply p2 “ m2 for the square of the
four-momentum, if the term m2ϕ2 is present in the Lagrangian. The quartic term, λϕ4 leads to
non-linear equations of motion, i.e., it describes interactions of the field (and the corresponding
particles) with itself. The strength of these interactions is parameterized by the coupling λ. In the
next few lectures, we focus on just the mass term.
Our choice of T requires a bit more justification: The kinetic part describes how the field changes
in space and time, thus it must contain a derivative, and Bµϕ is the building block to use. In
order to have a Lorentz-invariant expression, we must contract the open index and the only other
4-vector we have is another derivative. Thus, up to rescalings of the term, we have a unique lowest
order action in ϕ

S “

ż

d4x

ˆ

1
2Bµϕ Bνϕ η

µν ´
m2

2 ϕ2
˙

, (6)

where ηµν “ diagp1,´1,´1,´1q in our conventions, which most QFT books use. Many GR books
use ηµν “ diagp´1, 1, 1, 1q. The overall sign is pure convention; the difference in signs between the
time part and the spatial part is physics.

Mini-Exercise 1. We made the statement that we can set a constant and a linear term in
L to zero without loss of generality. For the constant term, this is because the equations of
motion follow from minimizing the action and the field value that minimizes S does not depend
on whether or not there is a constant shift in S.

1You have probably encountered or will encounter many examples where the Lagrangian does not have higher
than second order time derivatives. Electrodynamics is one example, General Relativity another, and classical
mechanics is full of examples. Note however that there are subtleties and there are counterexamples to the intuition
that a Hamiltonian that is unbounded from below leads to instabilities.
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For the linear term, we can always remove it by a change of our field variable (which you can
think of as analogous to a change in coordinates in class. mech.)
Show this! Start with

L “
1
2BµϕBµϕ´ Cϕ´

1
2m

2ϕ2. (7)

Define φ “ ϕ` γ. What is the choice of γ, such that

L “
1
2BµφBµφ´

1
2m

2φ2 ` const ? (8)

Solution.

L “
1
2BµφBµφ´ Cpφ´ γq ´

1
2m

2pφ´ γq2

“
1
2BµφBµφ´ Cφ` Cγ ´

1
2m

2φ2 `m2φγ ´
1
2m

2γ2

Define γ “ C
m2 :

Ñ
1
2BµφBµφ`

C2

m2 ´
1
2m

2φ2 ´
1
2m

2 C
2

m2 .

The equations of motion follow from extremizing the action, i.e., we perform a variation of the
action (i.e., a variation of the field, ϕ Ñ ϕ`δϕ, by some arbitrary amount δϕ). We set the variation
of the action to zero, just like, when we are searching for the minimum of a function, we are setting
its first derivative (analogous to the variation of the argument of the function) to zero:

0 “ δS “ δ

ż

d4x

ˆ

1
2BµϕBµϕ´

1
2m

2ϕ2
˙

“

ż

d4x
`

pBµϕqηµνpBνδϕq ´m2ϕδϕ
˘

“

ż

d4x
`

´pBνBµϕqηµνδϕ´m2ϕδϕ
˘

“

ż

d4x
`

´pBνBµϕqηµν ´m2ϕ
˘

δϕ, (9)

where in the second-to-last step we used partial integration and where we assume that δϕ “ 0 at
x Ñ ˘8. Because δϕ is an arbitrary variation, to satisfy Eq. (9), the factor ´BνBνϕη

µν ´ m2ϕ

must be zero.
This is the Klein-Gordon equation,

B2ϕ`m2ϕ “ 0, (10)

with B2 “ BµBνη
µν . The Klein-Gordon equation is a relativistic, massive wave equation.

For the Lagrangian, δS “ 0 translates into the Euler-Lagrange equations

BL
Bϕ

´ Bµ

ˆ

BL
BBµϕ

˙

“ 0. (11)

The solutions to the equations of motion are spanned by plane waves,

ϕpxq “ ϕ0 cospkxq, passuming ϕpxq “ ϕp´xqq (12)

with the shorthand kx “ kµx
µ and the relativistic, massive dispersion-relation kµk

µ “ k2 “ m2.
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Later on, a starting point for one quantization scheme (path-integral quantization) will be the
action, but the starting point for another quantization scheme (canonical quantization) will be the
Hamiltonian.
Just as in classical mechanics, where we define p “ BL

B 9q , the canonically conjugate momentum,
and Hpp, qq “ p 9q ´ L, in quantum field theory we define πpx⃗q, the canonically conjugate field.
(Note: it is the canonically conjugate field to ϕ, but has nothing to do with the momentum of the
particles that we will describe. It is sometimes called the (canonically conjugate) momentum field,
because it arises in the generalization of the Hamiltonian formalism to QFT and it generalizes the
momentum of a particle, which is the canonically conjugate variable to the position.) Its definition
is

πpx⃗q “
δL

δ 9ϕpx⃗q
, (13)

which is a functional derivative, i.e., a derivative with respect to a function. Just like Bx
Bx “ 1, we

have
δϕpx⃗q

δϕpy⃗q
“ δ3px⃗´ y⃗q. (14)

Thus, for the Lagrangian in Eq. (6), we obtain

πpx⃗q “
δ

δ 9ϕpx⃗q

ż

d3y

¨

˚

˚

˚

˝

1
2

9ϕ2 ´
1
2

´

∇⃗ϕ
¯2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
BµϕBµϕ

´
1
2m

2ϕ2

˛

‹

‹

‹

‚

“

ż

d3y
´

9ϕ δ3px⃗´ y⃗q

¯

“ 9ϕpx⃗q. (15)

Thus, to calculate the Hamiltonian, we can use that 9ϕ can be substituted by π. We obtain the
Hamiltonian of the system as

H “

ˆ
ż

d3xπ 9ϕ

˙

´ L

“

ż

d3x

ˆ

π2 ´

ˆ

π2

2 ´
1
2

´

∇⃗ϕ
¯2

´
m2

2 ϕ2
˙˙

“
1
2

ż

d3x

¨

˚

˚

˝

π2 `

´

∇⃗ϕ
¯2

`m2ϕ2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2H

˛

‹

‹

‚

“

ż

d3xH, (16)

where we defined the Hamiltonian density H.
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2 The importance and the mathematics of symmetries

Useful literature for this chapter is the following: There are books on group theory in physics
and more specifically particle physics, e.g., “Group theory in physics” by Wu-Ki Tung and “Lie
algebras in particle physics” by Howard Georgi.
QFT books also cover discussions of symmetry groups, for instance: Schwartz, chapter 2, covers
the basics of Lorentz transformations, and group theory basics for the Lorentz group are discussed
in 10.1. The Lorentz group and its Lie algebra generators are also discussed in Srednicki, chapter
2. Gelis (chapter 7.1) summarizes Lie groups and Lie algebras.
Symmetries are one of the most important foundational elements in QFT. This becomes obvious
from many examples:

i) In particle physics, the various mesons and baryons are organized into sets, e.g., the eight
lightest mesons are grouped into the meson octet according to the “eightfold way” which is
based on a so-called “SUp3q flavor symmetry”. Historically, this type of organization into
sets according to symmetries was central in predicting new particles.

ii) You might have heard that the Standard Model is an SUp3q ˆ SUp2q ˆ Up1q gauge theory.
Specifying this symmetry already fixes a large part of the Standard Model particle content
and the allowed interactions between particles.

iii) In condensed matter, phase transitions are associated with spontaneous breaking of symme-
tries. For instance, in a ferromagnet, at high enough temperature, there is no macroscopic
magnetization, which means that there is full rotational symmetry for each of the microscopic
spin vectors. At low temperature, in the magnetized phase, rotational symmetry is broken,
because the macroscopic magnetization spontaneously selects one spatial direction. More
generally, by knowing the symmetries that the degrees of freedom in a condensed-matter
system obey, we can already figure out which phases and phase transitions there could be.

iv) Lorentz symmetry (or its generalization, Poincaré symmetry, which adds translations (in
space and in time)) determine much of the properties of elementary particles and their
interactions and much of the mathematical structure of QFT.
For instance, the fact that we characterize elementary particles by their mass and their spin
is a direct consequence (as we will work out) follows from considering the Poincaré group.

v) . . .

This motivates us to dive into the mathematics of symmetries, because this appears to be the
language in which large parts of nature can be described.

2.1 Symmetries are described by groups

It turns out that there exists a mathematical structure that is exactly adapted to formalizing
symmetries, and that is a group.
Definition of a group:

A group G is a set of elements Gi P G, together with a “multiplication” ¨ , such that

Gi ¨Gj “ Gk, Gk P G @Gi, Gj P G. (17)
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This means that we can combine two elements of the group by the multiplication and
we obtain another element of the group. The multiplication law satisfies

• associativity

pGi ¨Gjq ¨Gk “ Gi ¨ pGj ¨Gkq @Gi, Gj , Gk P G. (18)

• D identity element E, s.t.

Gi ¨ E P G @Gi and E P G. (19)

• inverse element
@Gi P G D G´1

i P G, s.t. Gi ¨G´1
i “ E. (20)

Note that the identity element is unique, as is the inverse for each element.
Let’s parse this definition and the intuition behind the various requirements in physics language,
using rotations as an example and thinking of a spherically symmetric system:

• Two rotations can be performed consecutively, yielding a third rotation (about a different
axis). This is the multiplication law which allows us to combine group elements into new
group elements.

• When three rotations are performed, either the 1st and 2nd or 2nd and 3rd can be combined,
such that the consecutive execution of the three of them is equal in any of the two combina-
tions. (Note that we must not reverse the order of the three rotations, because the group is
not commutative.)

• There is an identity element, namely rotation by 0˝ (or no rotation).

• For each rotation, we can reverse the sense of rotation to rotate back, such that the combi-
nation of rotation and inverse rotation yields no rotation.

You may already know that rotations can be represented by matrices, such that, e.g., the identity
is the unit matrix and the inverse element is the inverse matrix.

We will encounter two mathematically distinct sets of groups that encode symmetries in QFT:

1) discrete groups (with a finite set of elements), for instance reflections about a plane (has
three elements: the reflection, its inverse, and the identity).

2) continuous groups, which are Lie groups. The rotation group is an example. It is continuous,
because it has infinitely many group elements (rotations by different angles) and “neighbor-
ing” rotations only differ infinitesimally.

We will also encounter three physically distinct types of groups2

2There is a theorem, the Coleman-Mandula theorem, that says that, under some assumptions, there are no
symmetry groups that mix spacetime symmetry transformations with internal symmetry transformations. The
realization that, by violating the assumptions, one can get around this theorem, and is then required to introduce
so-called “super-partners” led to the development of supersymmetry, which we will not treat in this course, but
which is a very interesting mathematical developments worth understanding. In nature, supersymmetry is realized
in some low-dimensional settings in condensed-matter theory, but does not appear to be realized in particle physics.
It is, however, instrumental in one approach to quantum gravity, namely in string theory.
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a) spacetime symmetry groups, which can either be continuous (like the Lorentz group, SOp1, 3q),
or discrete (like time-reversal symmetry which maps the time t to ´t)

b) internal symmetry groups, where “internal” here means that the symmetry does not act on
space and time (like, e.g. the Lorentz group), but only on the field. These come in two
different versions:

i) global internal symmetries (like the Z2-symmetry ϕ Ñ ´ϕ that we imposed on scalar
field theory to ensure that there is no ϕ3 term in the scalar potential, or the SOp3q

symmetry that is imposed on the scalar field in the Heisenberg model that describes
phase transitions in certain materials).
Global means that the symmetry transformation is the same for the field at all spacetime
points.

ii) local internal symmetries (like the Up1q gauge symmetry of electromagnetism).
Local here means that the symmetry transformation can be different at different space-
time points (even if it doesn’t act on the spacetime itself).

Some of these notions may seem a little abstract at the moment. They will become clearer as we
develop our understanding of group theory and come up with examples.
The most relevant groups for us will be Lie Groups.

2.2 Lie groups

These are groups in which the group elements form not just a set, but a differentiable manifold
(which is a collection of points such that each point has an open neighborhood that is equivalent
to Rn and which can be covered by coordinate charts that overlap partially).
This means that the group is continuous, such that you can always find a group element infinitesi-
mally close to any given element. Intuitively, we can see directly that the group of rotations should
be such a continuous group, because we can always rotate by an arbitrarily small amount and thus
find rotations which are only infinitesimally different from each other.

11



everything inbetween is also 
an element of the group

⑳
Examples:

• Up1q is the group of all unitary 1 ˆ 1 matrices, i.e.,

G “ eiα, α P C. (21)

The corresponding manifold is the circle (of radius 1) in the complex plane.
As a global symmetry, the phase α of the transformation does not depend on the spacetime
point. As a local symmetry, α is upgraded to a function αpxµq. We will explore the con-
sequences of this soon. In fact, this group determines the properties of photons and their
interactions with charged particles.

• SUp2q is the group of 2ˆ2 unitary matrices with determinant 1. The corresponding manifold
is the 3-sphere, S3.
To see this, we write

U :U “ 1 “ñ U “

˜

a b

´b˚ a˚

¸

with |a|
2

` |b|
2

“ 1 for a, b P C (22)

(Check:

U : “

˜

a˚ ´b

b˚ a

¸

and U :U “

˜

|a|
2

` |b|
2

(((((a˚b´ ba˚

(((((b˚a´ ab˚ |a|
2

` |b|
2

¸

“ 1q (23)

Now we write both complex numbers in terms of real and imaginary part,

a “ x` iy, b “ z ` it (24)

“ñ |a|
2

` |b|
2

“ |x|
2

` |y|
2

` |z|
2

` |t|
2

“ 1 parametrizes the group manifold SUp2q, where
x, y, z, t P R.
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This is the equation defining a unit 3-dimensional sphere embedded in 4-dimensional space,
i.e., S3.
SU(2) is the symmetry group determining the properties of the weak gauge bosons (W`, W´

and Z) and their interactions with the fermions in the Standard Model.

With a Lie group comes a Lie algebra g, LiepGq “ g. Knowing about the Lie algebra is useful,
because all properties of the Lie group follow from knowing the so-called generators of the Lie
algebra and their commutation relations.
A Lie algebra is a vector space g with a bilinear, antisymmetric map:

g ˆ g Ñ g, pa, bq ÞÑ ra, bs “ ´rb, as (25)

(that we suggestively write in the same notation that we use for the commutator) that satisfies
the Jacobi identity

ra, rb, css ` rb, rc, ass ` rc, ra, bss “ 0. (26)

We will only need matrix groups and matrix algebras. For matrix Lie groups, the relation between
group and algebra is given through the exponential map: For ai P g,

Gi “ exppaiq, (27)

(defined through its Taylor series) is a group element. Each group element (in the so-called identity
component of G) can be written in such a way. For 0 P g, 1 “ expp0q P G.
We can find a basis in g and these elements of the Lie algebra are called the generators. Having
this basis of generators, we can construct every group element through the exponential map.
Example: Rotation group SOp3q

SOp3q is the group of special orthogonal 3x3 matrices, i.e., matrices which are orthogonal, so
Rot RotJ

“ 1, where RotJ denotes the transposed matrix, and special, i.e., their determinant is
+1. They describe rotations, because we can check that the requirement that a rotation leaves the
length of a vector invariant requires Rot RotJ

“ 1. To check this, consider a spatial vector, with
components xi. Under a rotation, it is mapped to

xi Ñ xi1

“ Roti
k x

k. (28)

We require that its length stays invariant, so that

xi xj δij “ xi1

xj1

δij “ Rotik Rotj
l x

k xlδij . (29)

Thus, 1 “ Roti
k Rotj

l δij “ RotT Rot. This is in particular realized by matrices of the form

Rotx “

¨

˚

˝

1 0 0
0 cos θ ´ sin θ
0 sin θ cos θ

˛

‹

‚

, (30)

and analogously for rotations about the y and the z-axis.
Claim: LiepGq “ tantisymmetric 3 ˆ 3 matricesu

13



Mini-Exercise 2. Check that Rot RotJ
“ 1, as required for Rot P SOp3q, is realized by

Rot “ exppT q, if Tij “ ´Tji.

Solution.
R RJ

“ exppT q expp´T q “ 1,

because
RJ

“ pexppT qq
J

“ expTJ “ expp´T q.

Let’s see how we can reconstruct the group elements, i.e., the Rot matrices, from the Lie algebra
generators. An antisymmetric 3 ˆ 3 matrix with real components (so that Rot is real), has 3
independent components, so we have three basis elements

Tx “

¨

˚

˝

0 0 0
0 0 ´1
0 1 0

˛

‹

‚

, (31)

and analogously for the other two generators of the Lie algebra. Now we can write a rotation
about the x-axis as

Rotx “ exp pθ Txq “ 1 ` θ

¨

˚

˝

0 0 0
0 0 ´1
0 1 0

˛

‹

‚

` Opθ2q “

¨

˚

˝

1 0 0
0 1 ´θ

0 θ 1

˛

‹

‚

` Opθ2q, (32)

which is clearly the infinitesimal version of the rotation matrix given above.

What will be crucial in our construction of QFT is the notion of representations of groups and
algebras. For instance, we will construct the spin-0, spin-1/2 and spin-1 representations of the
Lorentz group to describe the Higgs field, the electron and the photon in the Standard Model, or
various excitations in condensed-matter systems.
Intuitively, a representation is a set of objects which satisfy the same multiplication rules as the
abstract group elements, i.e., they are often matrices, for which the multiplication satisfies the
combination rules that the group elements satisfy.
More formally, a representation R of a group is a map G R

Ñ́ GLpVq (where GLpVq are the general
linear transformations on a vector space), such that Rp1q “ 1 and Rpghq “ RpgqRphq. (In other
words, R is a group homomorphism from G to GLpVq.) Loosely speaking, we find matrices which
represent the symmetry operators.
Examples: representations of the rotation group SOp3q

• trivial representation: on scalar quantities RpRotq “ 1, no rotation.

• vector representation: on a vector, V “ R3, RpRotq “ Rot. This is the so-called fundamental
representation, in which the rotation matrices take the form that defines the group, namely
3x3 orthogonal matrices with unit determinant.

• tensor representation: on a tensor, V “ R3 ˆ R3, RpRotq “ Rot b Rot, because Tij ÞÑ

R k
i R

l
j Tkl.
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Similarly, Lie algebras have representations and from a representation of a Lie algebra, we can
always construct the associated representation of the group (by using the exponential map). Thus,
we will sometimes be a bit sloppy and switch back and forth between algebra and group.
Let’s make all of this more concrete by looking at the Lorentz and the Poincaré groups as our exam-
ples. These are our most important examples, because these encode the fundamental symmetries
of spacetime, on which we are constructing our quantum field theory.

2.3 Lorentz transformations and the Lorentz group

Lorentz transformations, abstractly denoted by Λ, act on 4-vectors that denote the spacetime
location of an event 3, i.e.,

xµ “

˜

t

x⃗

¸

(33)

as
x1µ “ Λµ

νx
ν , (34)

where the defining equation for a Lorentz transformation is

Λµ
ρηµν Λν

σ “ ησρ . (35)

This equation says that the Minkowski metric is left invariant under Lorentz transformations, which
implies that scalar products built with this metric are invariant under Lorentz transformations.
Because η is the Minkowski metric, the Lorentz group is SOp3, 1q, and contains boosts and spatial
rotations, instead of being SOp4q, the group of rotations of 4-dimensional space (which Eq. (35)
would define for ηµν Ñ δµν).
From Eq. (35), we have that Λ µ

ν “ ηµκηλνΛλ
κ is the inverse Lorentz transformation. This is

easiest to see by writing Eq. (35) in matrix notation, where it reads

ΛT ηΛ “ η, (36)

where the first Λ is transposed, in order for the index contraction in Eq. (35) to match index
contraction for matrix multiplication. From Eq. (36), we then have that

Λ´1 “ η´1ΛT η, (37)

which, in index notation, becomes

`

Λ´1˘µ

ν
“ ηµκ

`

ΛT
˘ λ

κ
ηλν “ ηµκΛλ

κηλν “ Λ µ
ν . (38)

When acting on 4-vectors, Λ are in their fundamental representation, which you can think of as
the representation that is used to define the group. How is the associated Lie algebra sop3, 1q

characterized?
We use that we can expand the exponential map to first order in the Lie algebra elements, if we
consider an infinitesimal transformation. For the fundamental representation

Λµ
ν “ δµ

ν ` ωµ
ν ` Opω2q (39)

3Note that we use units in which c “ 1.
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for an infinitesimal transformation. Eq. (35) then implies a property of the ω’s:

Mini-Exercise 3. What holds for ωµ
ν , such that (35) holds?

Solution.

`

δµ
ρ ` ωµ

ρ

˘

ηµνpδν
σ ` ων

σq
!

“ ησρ

ηρσ ` ωσρ ` ωρσ ` Opω2q “ ησρ “ñ ωρσ “ ´ωσρ.

It holds that
ωµν “ ´ωνµ, (40)

i.e., ωµν is an antisymmetric 4 ˆ 4 matrix and therefore has 6 independent components that can
be nonzero. Depending on which components we choose to be nonzero, we obtain a different group
element of the Lorentz group.
Let us consider an example: We choose ω12 “ ´ω21 “ θ and set all other components of ω to zero.
Note that we have to be careful with the upper and lower indices on ω, so there will be an ηµν

that will make an appearance below. We obtain that

Λµ
ν “ δµ

ν ` ωµρηρν

“ 1 `

¨

˚

˚

˚

˚

˝

0 0 0 0
0 0 ´θ 0
0 θ 0 0
0 0 0 0

˛

‹

‹

‹

‹

‚

. (41)

We observe that this generates nothing but a (infinitesimal) rotation of the four-vector xµ about
the z-axis by an angle θ. We also note that the contraction ωµρηρν essentially flips the sign, i.e.,
ω1

2 “ ´ω12 and similarly ω2
1 “ ´ω21.

Similarly, if we choose ω01 “ ´ω10 “ θ, we obtain

Λµ
ν “ 1 `

¨

˚

˚

˚

˚

˝

0 θ 0 0
θ 0 0 0
0 0 0 0
0 0 0 0

˛

‹

‹

‹

‹

‚

, (42)

which we can recognize as an infinitesimal boost along the x-axis, with θ being the rapidity,
tanh θ “ v{c. In this case, we have used that ω0

1 “ ω01η11 “ ´ω01 and ω1
0 “ ω10η00 “ ´ω10.

These examples help us to see that the six entries in ωµν which can be nonzero, select, which
among the six possible “basis” transformations (3 rotations along the 3 spatial axis, and 3 boosts
along these axis), can be performed and by which amount the physical system is rotated and/or
boosted. If we choose more than one component of ωµν to be non-zero, we get the corresponding
combination of these “basis” transformations.
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For a general representation UpΛq of the Lorentz transformation Λ, we have that

Up1 ` ωq “ 1 `
i

2ωµνM
µν ` Opω2q. (43)

In this expression, the ωµν still selects, which transformation is performed and determines the
“amount” of the transformation, but the “basis transformations” are now encoded in the Mµν .
The Mµν are called the generators of the Lorentz group, and there are six of them, representing
the three independent rotations and three independent boosts. We have that

J i “
1
2ϵ

i
jkM

jk generates rotations

Ki “ M i0 generates boosts,

where ϵijk is the Levi-Civita symbol, which is fully antisymmetric under permutations of its indices
and ϵ123 “ 1. Thus, M12, M13 andM23 generate rotations (along the z-, y- and x-axis, respectively)
and M01, M02 and M03 generate boosts along the x-axis, y-axis and z-axis, respectively.
A Lorentz transformation can act on many different objects, not just on four-vectors. In particular,
we will later in the course encounter spinors, which are objects that have spinor indices. These are
indices, i.e., a spinor is a collection of functions, but they are not spacetime indices. Therefore,
to have a Lorentz transformation act on a spinor, the Mµν need to carry the appropriate indices,
i.e., each of the six Mµν ’s, such as M01, M12 etc., must be a matrix with indices in the space that
it acts on.
This is somewhat abstract at this moment, so in order to make it less abstract, we consider the
case in which the Lorentz transformation acts on a four-vector. We already know that we can
write this in the form of Eq. (39), but now we want to understand how to write it in the form
Eq. (43), in which the generators appear explicitly. In fact, for the fundamental representation of
the Lorentz group, we have that

pMµνqκλ “ ´i pηµκηνλ ´ ηνκηµλq . (44)

By plugging this into Eq. (43), we get back Eq. (39).
While it seems unnecessarily complicated to introduce the M ’s for the action on 4-vectors, the
main point about Eq. (43) is that it is general; it describes the action of a Lorentz transformation
on any object.
The defining property of the generators of the Lorentz group is that they satisfy a commutation re-
lation. The abstract definition of the Lie algebra of the Lorentz group is through this commutation
relation:
The Lie algebra of the Lorentz group SOp3, 1q, is defined by the commutator relation of its gener-
ators, which is

rMµν ,Mρσs “ ipηµρ Mνσ ´ ηνρ Mµσq ´ ipηµσ Mνρ ´ ηνσ Mµρq. (45)

You will derive this commutation relation in the exercises. You can think of the Lorentz group
as being defined by this commutation relation. When we talk about different elementary particles
and different fields, they all arise from thinking about different representations of the Lorentz
group, i.e., many properties of elementary particles follow from this commutation relation above.
At this stage, this is still a rather abstract notion, but over the course of this course, we will see
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the commutation relation Eq. (45) “unfold its power”.

2.4 Poincaré group and why we classify particles by their mass and spin

We classify elementary particles by their mass and spin, plus quantum numbers associated to
internal symmetries. For instance, we describe the electron as a particles with rest-mass 511 keV
and spin-1/2 (and electric charge ´1). Why do we do so? Is it just a conventional choice and
we could be using some completely different characteristics? The answer is no. There is a deep
mathematical reason and it has to do with the structure of the Poincaré-group - a generalization
of the Lorentz group - and its so-called Casimir-operators.
The Poincaré group is an extension of the Lorentz group which, in addition to boosts and rotations,
contains translations, under which xµ ÞÑ xµ ` aµ. A transformation by an element of the Poincaré
group can be written as xµ ÞÑ Λµ

νx
ν ` aµ.

This is the full symmetry that 3+1-dimensional Minkowski spacetime enjoys.
An infinitesimal translation in a general representation can be written as

Upaq “ 1 ` iaµP
µ, (46)

where Pµ is the generator of translations. By Noethers theorem, Pµ will be identified as the
4-momentum in the corresponding representation. Its commutation relations with the other gen-
erators of the Poincaré group are

rPµ,Mρσs “ ipηµσP ρ ´ ηµρPσq (47)

rPµ, P νs “ 0. (48)

Now let us consider some state of n particles, which transforms under actions of the Poincaré
group. Under such transformations, its properties, such as its 4-momentum, change.
However, the Poincaré group has two Casimir invariants. These are (in the simplest case) quadratic
combinations of generators, which commute with all other generators. Therefore, their eigenvalues
are unchanged under the action of group elements and they provide invariant characterizations of
particles.
P 2 “ PµP

µ is the first Casimir invariant and W 2 “ WµW
µ, with Wµ “ ´ 1

2ϵµνρσM
νρPσ the

Pauli-Lubanski-pseudovector, is the second.

Mini-Exercise 4. Show that P 2 commutes with all generators of the Poincaré group.

Solution.

rP 2,Mµνs “ rP ρPρ,Mµνs

“ P ρrPρ,Mµνs ` rP ρ,MµνsPρ

“ P ρpiηρνPν ´ iηρµPνq ` piηρνPµ ´ iηρµPνqP ρ

“ ipPνPµ ´ PµPν ` PµPν ´ PνPµq

“ 0.

P 2 acting on a state with some 4-momentum yields the eigenvalue m2, i.e., because P 2 is a Casimir
operator of the Poincaré group, we label elementary particles by their rest mass.
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But what is the physical meaning of W 2?

W 2 “ WµW
µ “

1
4ϵµνρσM

νρPσϵµχλτM
χλP τ . (49)

Let’s consider this in a massive particles rest frame (massless particles are a separate case and we
will get to them later).
Then P Ñ pm, 0⃗q and W 0 “ 0. This holds, because ϵ is totally antisymmetric and because the
only non-zero component of P is P 0.

W i “
1
2ϵ

i
µν0M

µνP 0, (50)

here µ, ν must be spatial indices, but ­“ i. Therefore, ϵijk0 “ ϵijk, the 3d Levi-Civita symbol.
Thus,

W i “ J iP 0 “ mJ i “ñ W 2 “ ´m2J⃗ ¨ J⃗ . (51)

Now we need to interpret which angular momentum it is that shows up here. Which angular
momentum does an elementary particle have? Intrinsic angular momentum, i.e., spin. You might
remember from QM, that the eigenvalues of J⃗2 are sps` 1q, with s the spin.
“ñ Because W 2 is the 2nd Casimir operator of the Poincaré group, we label massive elementary
particles by their spin.

We have thus come to our first concrete result from our more abstract consideration of group
theory:
We have learned that there is a reason why we label elementary particles by mass and spin. This
is not an arbitrary choice, but a direct consequence of the fundamental symmetry-structure of
Minkowski spacetime and the properties of the underlying Poincaré group.

Next, we may wonder, what spin values4 are allowed? Can we have elementary particles with spin
0? spin 1{2? Spin 1? What about non-half-integers? Is there a particle with spin 2{3? or spin M?
To figure this out, we will classify the representations of the Lorentz group. This will determine
what type of fields we will focus on for the rest of the course.5 Generally, for a field with a
general Lorentz index A (could be a 4-vector index, or two 4-vector indices, such that the field is
a tensor, but we’ll also encounter spinor indices, which label the components of a spinor, but are
not spacetime indices), ϕapxq, we have

ϕ1
apxq “ L b

a pΛqϕbpΛ´1xq. (52)
4All in units of ℏ, which we set to 1.
5In the current discussion, we are switching back and forth between considering particles and fields. In this, we

are already using a result that we will see a little later in the course, namely that elementary particles show up as
excitations of fields. Therefore, it is to some extent equivalent to talk about particles or about the associated fields,
because the properties of the particles follow from the properties of the fields. However, let us highlight that there
is a difference when it comes to representations of the Poincaré group: fields transform in the finite-dimensional
representations of the group, i.e., they are constructed from a finite set of components. In contrast, particles
transform in the infinite-dimensional representation of the Poincaré group. Physically, this is, loosely speaking
because if you have a particle with some four-momentum pµ, then there are infinitely many other four-momenta pµ1

that are related to pµ by a boost. The choice of an infinite-dimensional representation is also necessary, because no
finite-dimensional representation is unitary, and we would like to have probabilities (or scalar products of a state
with itself) to be preserved under Poincaré transformations. Therefore, the representation that a field transforms in
is not the same one as the particles that it gives rise to transform in. However, for our purposes at the present, we
do not yet need to know this, as we will now simply focus on the representations that the fields can transform in.
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The matrices L b
a pΛq form a representation of the Lorentz group, i.e.,

L b
a p1 ` ωq “ δ b

a `
i

2ωµνpMµνq b
a (53)

where pMµνq b
a are representation matrices of the sop3, 1q Lie algebra, so that

rMµν ,Mρσs “ ipηµρ Mνσ ´ ηνρ Mµσq ´ ipηµσ Mνρ ´ ηνσ Mµρq. (54)

To understand which spins elementary particles can have, we must find all possible (finite-dimensional)
matrices Mµν

ab that obey these commutation relations, in order to find the possible fields that we
can write down. This sounds like a challenging problem, but it turns out that we are lucky if we
know something about the representation of the Lie algebra SUp2q 6.
From QM, we know that rJi, Jjs “ iϵijkJk, which is the SUp2q Lie algebra, is satisfied by sets of 3
hermitian matrices of size p2j ` 1q ˆ p2j ` 1q, where the eigenvalues of J3 are ´j,´j ` 1, . . . ,`j.
(If you would like a “refresher” on this, a good place to read up on it is, e.g., Sakurai “Modern
Quantum Mechanics”.)

Our luck lies in the fact that upon introducing

Ni “
1
2 pJi ´ iKiq premember : Ji “

1
2ϵijkMjk and Ki “ Mi0q (55)

and
Mi “

1
2 pJi ` iKiq (56)

(Note: Ji,Ki are hermitian; Ni is not; in fact Mi “ N :

i .) we find that

rNi, Njs “ iϵijkNk, rMi,Mjs “ iϵijkMk, rNi,Mjs “ 0. (57)

The Lie algebra of SOp3, 1q is nothing but two separate SUp2q Lie algebras!
Thus, we can build the representations of the SOp3, 1q Lie algebra from representations of the
SUp2q Lie algebra!
“ñ Each irreducible (i.e., not give by a product of two smaller representations) representation
of the SOp3, 1q Lie algebra is specified by two integers or half-integers n1 and n, which are the
eigenvalues of M3 and N3.
We label these representations by n and n1 or by the number of components in each representation,
p2n` 1q and p2n1 ` 1q.
To understand the corresponding spin of the field (and the particles that are the excitations of the
field), we go back to the Pauli-Lubanski pseudovector and the associated Casimir operator, in the
rest-frame, W 2 “ ´m2J⃗ ¨ J⃗ and also use that Ji “ Mi `Ni. Thus,

6Note that the Lie algebras for SOp3q and SUp2q are identical. For the groups, there are some subtle differences,
which need not directly concern us.
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pn, n1q
`

2n` 1, 2n1 ` 1
˘

spin name of the field
p0, 0q p1, 1q 0 scalar (singlet)
` 1

2 , 0
˘

p2, 1q 1
2 left-handed spinor

`

0, 1
2

˘

p1, 2q 1
2 right-handed spinor

` 1
2 ,

1
2

˘

p2, 2q 1 vector (this has 2 ¨ 2 “ 4 components,
which is the right number for a 4-vector)

Therefore, we now have a clear idea which fields we are going to consider. Rather than guessing
that maybe there could be elementary particles with spin 2{3 (or other non half-integer values) out
there, and somehow trying to come up with ideas for what the corresponding fields could be, we
already know that such fields/particles do not exist and we do not need to spend our time trying
to find a description for them, because our considerations, based on symmetries, tell us that such
an effort is futile.
To sum up, by considering the fundamental symmetry of Minkowski spacetime, that a theory of
fields and associated particles living on that spacetime has to satisfy, we have developed a com-
prehensive list of possible fields that can exist. Thus, rather than proceeding by trial-and-error, we
have found a systematic structure that the rest of this course (and Quantum Field Theory) will
follow. This structure is very restrictive and only allows us to consider fields which are associated
to integer or half-integer spins. It is therefore not an accident that all elementary particles have
integer or half-integer spin; there are no other options for them, based on the underlying symmetry
group, the Poincaré group.
We will work our way through the spin 0, 1{2 and 1 cases in the course, because, as it turns out,
they are all part of the Standard Model of particle physics.
Higher spins (3{2, 2) do not correspond to detected elementary particles, although spin 3/2 plays
a role in supergravity, where a spin 3/2 particle is the superpartner of the graviton. The graviton,
which is the expected quantum of the gravitational field, has spin 2.

2.5 Noether’s theorem

Symmetries not only help us to understand the building blocks of our theory (i.e., which fields
there may be and how we characterize particles), they also imply conserved quantities and thus
determine dynamical processes. The link between symmetries and conserved quantities is at the
heart of Noether’s theorem, just as in classical mechanics.

Noether’s theorem in QFT states that:
Every continuous symmetry of the action implies a conserved current density and a conserved

charge.

This is similar to Noether’s theorem in classical mechanics with the key difference being the conser-
vation of the current. To derive the theorem, we will consider a scalar field; the theorem generalizes
to non-zero spin fields, such as the gauge field and spinor fields.

As an example of a continuous spacetime symmetry, consider a translation x Ñ x1 “ x ` d. How
does ϕ Ñ ϕ1 look like? Note that we will take the active point of view, where we are assuming
that the physical field configuration changes (in contrast to the passive point of view, where the
coordinates change). It should hold that the transformed field at the transformed point is equal
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shift of field

shift of points:

net result:
Figure 1: We show a field configuration ϕpxq in the upper panel. In the central panel, we have
shifted the field by a distance d (active transformation) and in the lower panel, we have then
additionally shifted the coordinates by the same distance d, so that x1 “ x` d.

to the untransformed field at the original point, because, if we are shifting the field, but then also
shift all points, the system remains unchanged. Thus

ϕ1px1q “ ϕpxq, (58)

which is shown in Fig. 1.
Thus, ϕ1pxq is defined by applying the inverse transformation to the argument, i.e.,

ϕ1pxq “ ϕpx´ dq. (59)

When we generalize to a Lorentz transformation x1 “ Λx, we have the same behavior: the scalar
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field is evaluated at a point that corresponds to the inverse of the transformation.

ϕ1pxq “ ϕpΛ´1xq. (60)

We can also consider internal symmetries, e.g., for a complex scalar field ϕpxq taking values in C
instead of in R, we can write an action that has a Up1q symmetry:

SUp1q complex scalar “

ż

d4x

ˆ

1
2Bµϕ

˚Bµϕ´
1
2m

2ϕ˚ϕ

˙

, (61)

which is invariant under ϕpxq Ñ eiαϕpxq, and, accordingly ϕ˚pxq Ñ e´iαϕ˚pxq. The infinitesimal
version of this transformation is

ϕ1pxq “ ϕpxq p1 ` iα ` ...q . (62)

We will consider this example in much more detail later in the lecture.
To derive Noether’s theorem, we assume some continuous symmetry, but we do not need to specify
whether it is a spacetime symmetry or an internal symmetry. Noether’s theorem holds for both.
Because we are assuming a continuous symmetry, there is an infinitesimal version of this transfor-
mation of the field

ϕpxq Ñ ϕ1pxq “ ϕpxq ` εχpxq. (63)

(For a discrete symmetry, there are only finite transformations, e.g. a Z2-symmetry under which
ϕpxq Ñ ´ϕpxq has no infinitesimal version. This is why all that follows holds for continuous, but
not for discrete symmetries.)

For instance, for an infinitesimal translation, we can write the right-hand side in terms of a Taylor
expansion

ϕ1pxq “ ϕpxq `
Bϕ

Bxµ
dµ ` ..., (64)

“ ϕpxq ` ϵµχ
µpxq, (65)

where we consider dµ to be an infinitesimal shift and we defined Bµϕd
µ “ ϵµχ

µpxq. When we
perform a translation in a single direction in spacetime, this reduces back to the form ϵµχ

µ Ñ ϵ χ.
We denote the difference between the transformed and the untransformed field

δεϕ – ϕ1 ´ ϕ. (66)

Under this change in the field, the Lagrangian changes as follows:

δεL “ L1 ´ L “ Lpϕ1, Bϕ1q ´ Lpϕ, Bϕq (67)

“
BL
Bϕ
δεϕ`

BL
BpBµϕq

δεBµϕ, (68)

where δεBµϕ “ Bµϕ
1 ´ Bµϕ. (Note that we’re slightly abusing naming conventions, as advertised,

because this is the Lagrangian density, but we are referring to it as the Lagrangian. This is very
common practise in QFT.)
Because we assume that the transformation corresponds to a symmetry of the action, the action
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must stay invariant under it. Thus, the Lagrangian may at most change by a total derivative, so
we can write

δεL “ εBµF
µpϕ, Bϕ, B2ϕ, xq, (69)

where, depending on the symmetry Fµ may actually be zero, so that even the Lagrangian is
invariant under the symmetry.
We know that δεL „ ε, because δεL Ñ 0 for ε Ñ 0. In principle, Fµ “ Fµpϕ, Bϕ, B2ϕ, xq can have
dependencies on x and on B2ϕ, etc., even if L does not.
Now we want to derive the conserved current. BµF

µ is a good starting point, because it already
has the required form for a conservation law, Bµj

µ “ 0.

εBµF
µ “ δεL “

BL
Bϕ
δεϕ`

BL
BpBµϕq

δεBµϕ. (70)

In the next step we use the equations of motion,

BL
Bϕ

´ Bµ
BL

BpBµϕq
“ 0, (71)

to rewrite the 1st term into a form that also has a partial derivative in front, as needed to derive
a conservation law. Note that this will mean that everything that follows only applies for field
configurations which satisfy the equations of motion. (In QFT, these are often called “on-shell”
configurations. In a few weeks, when we talk about the path integral quantization, we will explicitly
see the difference to the “off-shell” configurations.) We obtain

“ñ εBµF
µ “

ˆ

Bµ
BL

BpBµϕq

˙

δεϕ`
BL

BpBµϕq
δεBµϕ (72)

“ Bµ

ˆ

BL
BpBµϕq

δεϕ

˙

. (73)

Thus,
Bµ

´

Fµ ´
BL

BpBµϕq
χ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
jµ

¯

“ 0. (74)

jµ is a conserved current.

Example: Energy-momentum tensor and its conservation

In classical mechanics, the symmetry-transformation underlying energy-momentum conservation
is a space-time-translation:

xµ Ñ x1µ “ xµ ´ ϵµ. (75)

(These are really 4 symmetries packaged into one.)
The resulting transformation of the field is, as we wrote above,

ϕ1pxq “ ϕpx` εq (76)

“ñ δεϕ “ ϕpx` εq ´ ϕpxq “ εν Bνϕpxq
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

χν

(77)
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Eq. (76) means that the new field at x is the same as the old one at x`ε, because the shift is by ´ε,
and we are again using the active view on transformations. In Eq. (77), χ has an index, because
there are 4 symmetries. Eq. (77) is to 1st order in ε, because we can Taylor expand ϕpx ` εq.
Thus, if we focus on the dependence of L on x (through its dependence on ϕ),

L1pxq “ Lpx` εq (78)

“ñ δεL “ Lpx` εq ´ Lpxq (79)

“ εµBµLpxq (to 1st order in εq (80)

“ ενBµp δµ
ν L

²
– F µ

ν .

q (81)

Now we can use the general expression we derived before to get the conserved currents. Because
we are looking at 4 symmetries at the same time, we will have 4 conserved currents, each of which
is a 4-vector. In Eq. (81), you can think of the index µ as the index that belongs to a conserved
current (which is a four-vector) and the index ν as the one that labels the four distinct currents
that there are for the four distinct translations. Which translation is performed, is selected by the
non-zero components of ϵν .
To “package” the four conserved currents into one expression, we write

jµ
ν “

BL
BpBµϕq

χν ´ Fµ
ν (82)

“
BL

BpBµϕq
Bνϕ´ δµ

ν L. (83)

This conserved tensor is usually written as

Tµν “
BL

BpBµϕq
Bνϕ´ ηµνL. (84)

It is conserved, BµT
µν “ 0, and called the energy-momentum (or stress-energy) tensor.

Let us clarify the status of Tµν : we could derive the expression jµν in Eq. (83) from spacetime
translations even if spacetime translations would not correspond to a symmetry of the action.
However, we would not have that jµν is a conserved quantity. In other words, if S1 ‰ S under a
transformation, we will have Bµj

µ ‰ 0 for the jµ corresponding to this transformation.

Side-note: The energy-momentum tensor is an entry-point into General Relativity, because, if we
promote ηµν Ñ gµν , then Tµν acts as a source for spacetime curvature in the Einstein equations.
The physical meaning behind that is that any form of energy or momentum sources spacetime
curvature.

In our statement of Noether’s theorem, we also mentioned the conservation of a charge. Let us
derive what the conserved charge is. From the conservation of the current, we can also derive the
conservation of a charge:

Qptq “

ż

d3x j0pt, x⃗q. (85)

It holds that
9Q “

d
dtQptq “ 0, (86)

25



if we assume that all fields and their derivatives vanish at |x| Ñ 8, i.e., we only consider nonzero
field configurations away from spatial infinity. This is reasonable to describe all realistic physical
situations that we are interested in (e.g., particle physics experiments at CERN, phonons in the
Bose-Einstein-Condensates of our experimental friends in Neuenheimer Feld, or superconducting
Cooper-pairs in superconductors in various labs, all of which are described by QFT.)
We can show 9Q “ 0 as follows:

9Q “
d
dt

ż

d3x j0pt, x⃗q “

ż

d3x
`

B0j
0pt, x⃗q

˘

(87)

“ ´

ż

d3x Bij
ipt, x⃗q pby conservation of the currentq (88)

“ ´

ż

dxdydzpBxj
x ` Byj

y ` Bzj
zq (89)

“ ´

ż

dydz jx

ˇ

ˇ

ˇ

ˇ

xÑ˘8

`

ż

dxdz jy

ˇ

ˇ

ˇ

ˇ

yÑ˘8

`

ż

dxdy jz

ˇ

ˇ

ˇ

ˇ

zÑ˘8

(90)

“ 0, (91)

if fields and derivatives vanish at |x| Ñ 8, so that j vanishes there.
Let us highlight that the conservation of a current is stronger than the conservation of the charge,
because it implies that the charge is conserved locally, i.e., changes of the charge in a (finite) volume
in time must be accounted for by a current flowing though the surface of the volume. To see this,
write:

dQV

dt “ ´

ż

V

d3x ∇⃗ ¨ j⃗ “ ´

ż

A“BV

j⃗ ¨ dS⃗. (92)

QV is the charge in a volume V . In the last step we used Gauss’ theorem for volume integrals of
divergences.
Example: the conserved charges following from the conservation of the energy-momentum tensor
are:

ż

d3x T 00 “

ż

d3x

ˆ

BL
B 9ϕ

9ϕ´ L
˙

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
We recognize this

as the Hamiltonian!

“ H “: P 0 (93)

The other conserved charges are the spatial momenta, so P ν “
ş

d3x T 0ν is conserved.

Noether’s theorem also applies to continuous internal symmetries. We’ll consider an example later
in the course.

Mini-Exercise 5. Take
L “

1
2BµϕBµϕ´

1
2m

2ϕ2. (94)

What is P i?

26



Solution.

P i “

ż

d3x T 0i “
BL
B 9ϕ

Biϕ´ η0i

°
“0

L

“ 9ϕ Biϕ. pnot surprisingly only dependent on kinetic energy)

We note that the conserved quantities in turn are the generators of the associated symmetry.
This closes our considerations of symmetries. We have learned that symmetries are encoded in
groups. Continuous symmetries of interest in physics are Lie groups, for which each symmetry
transformation can be generated by the generators of the Lie algebra. In turn, Noether’s theorem
tells us that each symmetry leads to a conserved quantity. This conserved quantity is the generator
that generates this symmetry.
If we did not know about the Lie group associated to a symmetry, we could therefore learn about
it from the action of the symmetry and the resulting conserved quantities.
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3 Canonical quantization of the free scalar field

We are now ready to quantize the scalar field. We will first quantize it according to canonical
quantization, because that makes the connection between fields and particles clear. We will then
quantize it according to path-integral quantization, because that makes the quantum superposition
principle clear. By introducing both canonical and path-integral formalism early on (as not all
QFT books do), we are also acquiring a versatile toolbox with which to build more complicated
QFTs (e.g., the Standard Model of particle physics) later. In addition, the canonical framework
and the path-integral framework provide us with a different type of intuition about quantum fields,
so it is very useful to know both.

3.1 Canonical Quantization of the real scalar field in the Schrödinger
picture

We start with the non-interacting field, L “ 1
2 BµϕBµϕ´ 1

2m
2ϕ2. In the Schrödinger picture, we only

consider the spatial dependence of the field (the time-dependence will be carried by the states).
We work in a formal analogy to quantum mechanics, where we generalize its formal structure.
In Quantum Mechanics, we have the operators x and p “ dL

d 9x , for which we impose rx, ps “ i

(in units where ℏ “ 1). We will generalize this structure by making the analogy x » ϕpx⃗q and
p » Πpx⃗q “ BL

B 9ϕ
.7

In analogy to quantum mechanics, we promote the field and its conjugate field to operators8 and
demand commutation relations:

rϕpx⃗q,Πpy⃗qs “ iδ3px⃗´ y⃗q (95)

rϕpx⃗q, ϕpy⃗qs “ 0 “ rΠpx⃗q,Πpy⃗qs. (96)

The operators have no time dependence, because we work in the Schrödinger picture, where states
carry time-dependence and operators do not. The operators depend on the spatial position, x⃗, be-
cause they are fields and thus describe infinitely many degrees of freedom (one at each spacetime
point) rather than finitely many, as in QM.

So far, these are formal expressions. How can we build the Hilbert space of states and what
operators will the states be eigenstates of? Also, how does the field act on the states; what is the
physical meaning of that?
To answer all of these questions, we start from the observation that the Hamiltonian H is very
reminiscent of an (infinite) set of harmonic oscillators (one for each point) and we know how to
quantize the harmonic oscillator. In detail, the Hamiltonian of the free scalar field is:

H “
1
2

ż

d3x pΠ2 ` p∇⃗ϕq2 `m2ϕ2q (97)

In comparison, the Hamiltonian of the harmonic oscillator in quantum mechanics is HQM “ 1
2mp

2`

mω2

2 x2.
7Note that Πpx⃗q has nothing to do with the physical momentum, i.e., the momentum P⃗ that we can derive as

a conserved quantity from Noether’s theorem for spatial translation. The physical momentum can be expressed in
terms of the fields, as is done at the end of the last chapter.

8Note: We are not putting hats on operators. It should be clear from the context, when we are dealing with the
QM theory in its canonical formulation and hence with operators.
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However, the structure of H is not fully analogous to HQM, because the term „ p∇⃗ϕ2q couples
harmonic oscillators at neighboring points.
We can actually decouple the oscillators by going to Fourierspace, where p∇⃗ϕq2 will become „ pp⃗ϕq2

and H will become an infinite set of decoupled harmonic oscillators, one for each Fourier mode (or
momentum).
We write the field ϕpx⃗q in terms of its Fourier modes ϕ̃pp⃗q as

ϕpx⃗q “

ż

d3p

p2πq3 e
ip⃗¨x⃗ϕ̃pp⃗ q (98)

and the inverse relation
ϕ̃pp⃗ q “

ż

d3x e´ip⃗¨x⃗ϕpx⃗q, (99)

where, to show this inverse relation, it is crucial that
ż

d3p

p2πq3 e
ip⃗¨px⃗´y⃗q “ δ3px⃗´ y⃗q. (100)

You will prove this representation of the Dirac delta-distribution in the exercises.
Similar expressions hold for Πpx⃗q. From these, and the commutators for ϕpx⃗q and Πpy⃗q, we can
deduce

“

ϕ̃pp⃗q, Π̃pq⃗q
‰

.

Mini-Exercise 6. Deduce what the commutator
“

ϕ̃pp⃗q, Π̃pq⃗q
‰

is.

Solution.

“

ϕ̃pp⃗q, Π̃pq⃗q
‰

“

ż

d3x

ż

d3y e´ip⃗¨x⃗e´iq⃗¨y⃗ rϕpx⃗q,Πpy⃗qs
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

iδ3px⃗´y⃗q

“ i

ż

d3x e´ix⃗¨pp⃗`q⃗q

“ ip2πq3δ3pp⃗` q⃗q.

Further, one can similarly check that

“

ϕ̃pp⃗q, ϕ̃pq⃗q
‰

“ 0 “
“

Π̃pp⃗q, Π̃pq⃗q
‰

. (101)

To evaluate H in Fourierspace, let’s first focus on the term
ż

d3x p∇⃗ϕq2 “

ż

d3x

ż

d3p

p2πq3 ip⃗ e
ip⃗¨x⃗ϕ̃pp⃗q

ż

d3q

p2πq3 iq⃗ e
iq⃗¨x⃗ϕ̃pq⃗q. (102)

The scalar product between the two gradients, ∇⃗ ¨ ∇⃗ becomes the scalar product between p⃗ and
q⃗. We proceed by rearranging the terms so that all those involving x are grouped together in the
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back:
ż

d3x p∇⃗ϕq2 “

ż

d3p

p2πq3

ż

d3q

p2πq3 p´p⃗ ¨ q⃗qϕ̃pp⃗qϕ̃pq⃗q

ż

d3x eip⃗¨x⃗eiq⃗¨x⃗

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p2πq3δ3pp⃗`q⃗q

(103)

“

ż

d3p

p2πq3 p`p⃗ 2qϕ̃pp⃗qϕ̃p´p⃗q. (104)

ϕ̃p´p⃗q is related to ϕ̃pp⃗q through complex conjugation, because ϕpx⃗q is real:

ϕpx⃗q “ ϕ˚px⃗q “ñ ϕ̃:pp⃗q “ ϕ̃p´p⃗q. (105)

We write a dagger, because we are dealing with operators. The classical field satisfies
ϕ˚pp⃗q “ ϕp´p⃗q. Overall, we arrive at

H “

ż

d3p

p2πq3
1
2

´

ˇ

ˇΠ̃
ˇ

ˇ

2

±̃
Π¨Π̃:

` pp⃗ 2 `m2q
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

“ω2
p⃗

ˇ

ˇϕ̃
ˇ

ˇ

2¯

. (106)

Now we have achieved full analogy with an (infinite, but not coupled) set of harmonic oscillators
and so we know how to proceed to construct the Hilbert space!

At a conceptual level, the expression highlights

• the difference to QM: one (or finitely many) vs. infinitely many degrees of freedom

• a dangerous assumption: We assumed in this derivation, that this theory is consistent up to
arbitrarily high energies (arbitrarily high ωp⃗). We will recap the consequences when we come
to the topic of Ultraviolet (UV) divergences later.
Note: UV has nothing to do with a frequency of light here; in QFT, it refers to “high energy”.

3.2 Creation and annihilation operators and construction of the Fock
space

We have rewritten the Hamiltonian for the non-interacting scalar field as an infinite set of decou-
pled harmonic oscillators, one for each momentum p⃗.
Conceptually, this highlights the difference between QM and QFT: finitely vs. infinitely many de-
grees of freedom (we will see how they are related to particles).
Mathematically, it means that we can follow the procedure to solve the simple harmonic oscillator
in QM and generalize to QFT.

For the simple harmonic oscillator in QM, with Hamiltonian HQM “ 1
2mp

2 ` mω2

2 x2, we introduce
a “ 1

2 p
?

2ωmx ` i
b

2
ωm pq and obtain H “ ωpa:a ` 1

2 q and
“

a, a:
‰

“ 1 and can construct all
eigenstates of H with the “ladder” operators a, a:.
In analogy, we define an operators a for each p⃗, i.e., one simple harmonic oscillator for each of the
infinitely many values of the spatial momentum p⃗, and check whether this works out. (Note that
this is not a priori clear, because ϕ̃pp⃗q is conjugate to Π̃p´p⃗q and not Π̃pp⃗q, because

“

ϕ̃pp⃗q, Π̃p´q⃗q
‰

“
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ip2πq3δ3pp⃗´ q⃗q.) We define:

ap⃗ “
1
2

´

a

2ωp⃗ ϕ̃pp⃗q ` i

d

2
ωp⃗

Π̃pp⃗q

¯

(107)

The form of a:

p⃗ follows:

a:

p⃗ “
1
2

´

a

2ωp⃗ ϕ̃p´p⃗q ´ i

d

2
ωp⃗

Π̃p´p⃗q

¯

, (108)

where we used that ϕ̃:pp⃗q “ ϕ̃p´p⃗q and Π̃:pp⃗q “ Π̃p´p⃗q. In the next step, we have to figure out the
commutation relations of ap⃗ and a:

p⃗ from those for the field and its conjugate field.

Mini-Exercise 7. What is
”

ap⃗, a
:

q⃗

ı

? Work efficiently and don’t write out terms that will be
zero.

Solution. By using ap⃗ expressed through ϕ̃, Π̃, we can rewrite
”

ap⃗, a
:

q⃗

ı

in terms of the
commutators of ϕ̃ and Π̃. By using that

“

ϕ̃pp⃗q, ϕ̃pq⃗q
‰

“ 0 “
“

Π̃pp⃗q, Π̃pq⃗q
‰

, we can directly
reduce this to

”

ap⃗, a
:

q⃗

ı

“

«

1
2

a

2ωp⃗ ϕ̃pp⃗q,
´i

2

d

2
ωq⃗

Π̃p´q⃗q

ff

`

«

1
2 i

d

2
ωp⃗

Π̃pp⃗q,
1
2

a

2ωq⃗ ϕ̃p´q⃗q

ff

“
´i

2

c

ωp⃗

ωq⃗
ip2πq3δ3pp⃗´ q⃗q `

i

2

c

ωq⃗

ωp⃗
ip2πq3p´qδ3p´q⃗ ` p⃗q

“ p2πq3δ3pp⃗´ q⃗q.

In the last step, we set
b

ωp⃗

ωq⃗
δ3pp⃗ ´ q⃗q “ δ3pp⃗ ´ q⃗q, because, wherever the prefactor ωp⃗

ωq⃗
­“ 1,

δ3pp⃗´ q⃗q Ñ 0.

Similarly, we can derive that
rap⃗, aq⃗s “ 0 “

”

a:

p⃗, a
:

q⃗

ı

. (109)

Thus, we have established analogous commutations relations between the a’s and a:’s as those
in QM. Now, we want to check whether we can also rewrite the Hamiltonian in a way that is
analogous to QM. For that, it is useful to write ϕ̃pp⃗q and Π̃pp⃗q in terms of ap⃗ and a:

p⃗.
From (107) and (108), we get

ϕ̃pp⃗q “
1

a

2ωp⃗

pap⃗ ` a:

´p⃗q (110)

Π̃pp⃗q “ ´i

c

ωp⃗

2 pap⃗ ´ a:

´p⃗q. (111)
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Thus, the Hamiltonian becomes

H “

ż

d3p

p2πq3
1
2

´

ˇ

ˇΠ̃
ˇ

ˇ

2
` ω2

p⃗

ˇ

ˇϕ̃
ˇ

ˇ

2¯

(112)

“

ż

d3p

p2πq3
1
2

´

´iωp⃗

2 pap⃗ ´ a:

´p⃗qipa:

p⃗ ´ a´p⃗q ` ω2
p⃗

1
2ωp⃗

pap⃗ ` a:

p⃗qpa:

p⃗ ` a´p⃗q

¯

(113)

“

ż

d3p

p2πq3
ωp⃗

4

´

ap⃗a
:

p⃗ ´
�������
ap⃗a´p⃗ ´ a:

´p⃗a
:

p⃗ ` a:

´p⃗a´p⃗ ` ap⃗a
:

p⃗ `
�������
ap⃗a´p⃗ ` a:

´p⃗a
:

p⃗ ` a:

´p⃗a´p⃗

¯

(114)

“

ż

d3p

p2πq3
ωp⃗

2 pap⃗a
:

p⃗ ` a:

´p⃗a´p⃗q. (115)

In the underlined term, we rename the integration variable p⃗ Ñ ´p⃗. Under this change, ωp⃗ “

ω´p⃗ “
a

p⃗ 2 `m2 and
ş

d3p Ñ
ş

d3p. Thus,

H “

ż

d3p

p2πq3
ωp⃗

2 pap⃗a
:

p⃗ ` a:

p⃗ap⃗q. (116)

Just like in QM, it will be useful to rewrite the order or ap⃗ and a:

p⃗, which we can do by using the
commutator.

ñ H “

ż

d3p

p2πq3 ωp⃗

´

a:

p⃗ap⃗ `
1
2

”

ap⃗, a
:

p⃗

ı

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
p2πq3δ3p0q

¯

. (117)

We interpret p2πq3δ3p0q “
ş

d3x ei⃗0¨x⃗ “
ş

d3x “ VolpR3q “: V as the volume of space, so that

H “

ż

d3p

p2πq3 ωp⃗

ˆ

a:

p⃗ap⃗ `
V

2

˙

. (118)

The part
ş

d3p
p2πq3 ωp⃗

V
2 is divergent, due to the contribution of zero-point energies of harmonic oscil-

lators with arbitrarily high frequency (even if V is kept finite). This is called an ultraviolet (UV)
divergence.
We will encounter more UV divergences soon, when we will discuss regularization and renormaliza-
tion. The physical reason behind UV divergences is always that we consider momentum integrals
to arbitrarily high momenta. In doing so, we are assuming that the theory that we are considering
holds to arbitrarily small distances (high momenta). This is clearly a (wild) extrapolation, because
experimentally we can only check QFTs (e.g., those that make up the Standard Model) down to
„ 10´19m (or 10TeV). In QFTs relevant to condensed matter, there is a known UV cutoff in the
form of the lattice spacing between atoms. Below this cutoff, it does not make sense to think
about, e.g., phonons or other collective excitations that are described by a QFT.

Specifically, the UV divergence associated to the vacuum energy, V
ş

d3p
p2πq3

ωp⃗

2 , can be ignored
in QFT on M4 in the absence of non-trivial boundary conditions, because we can only measure
differences in energy, but not a constant, ever present (even if infinite) shift in H.
However, once we couple QFT to gravity, the vacuum energy curves spacetime and acts as a
cosmological constant. The fact that the physical, finite value (after renormalization) of it cannot
be calculated, but is a free parameter, is part of the cosmological-constant problem.
Now we can continue with constructing the Fock space. To do so, we postulate a vacuum state |0y,

ap⃗ |0y “ 0 @ p⃗. (119)
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One-particle states are defined as
|p⃗y “ a:

p⃗ |0y . (120)

Why is this called a one-particle state?

Mini-Exercise 8. Calculate H |p⃗y and from your finding, explain why |p⃗y is called one particle
state.

Solution.

H |p⃗y “

ż

d3k

p2πq3 ωk⃗a
:

k⃗
ak⃗a

:

p⃗ |0y

“

ż

d3k

p2πq3 ωk⃗a
:

k⃗

”

ak⃗, a
:

p⃗

ı

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
p2πq3δ3pk⃗´p⃗q

|0y ` 0 pusing ap⃗ |0y “ 0q

“ ωp⃗ a
:

p⃗ |0y

“ ωp⃗ |p⃗y .

ωp⃗ “
a

p⃗ 2 `m2 is the relativistic energy of a single particle of mass m and momentum p⃗.
This justifies calling |p⃗y a one-particle state.

Note that this state contains a single particle of fixed momentum, but completely delocalized. We
will look at localized states later.
We can continue with N -particle states

|p⃗1 . . . p⃗N y “ a:

p⃗1
. . . a:

p⃗N
|0y (121)

and find
H |p⃗1 . . . p⃗N y “ pωp⃗1 ` . . .` ωp⃗N

q |p⃗1 . . . p⃗N y . (122)

So far, these states are not normalized yet. We impose

||0y|
2

“ x0|0y “ 1. (123)

Then,
´

a:

p⃗ |0y

¯

¨

´

a:

q⃗ |0y

¯

“ x0| ap⃗ a
:

q⃗ |0y “ p2π3qδ3pp⃗´ q⃗q, (124)

i.e., one-particle states with different momenta are orthogonal. However, we want to change the
normalization in order to account for Lorentz covariance.
We want

Λ |py “
ˇ

ˇp1
D

, if p1µ “ Λµ
νp

ν , (125)

such that we can demand
@

p1
ˇ

ˇq1
D

“ xp|qy , (126)

i.e., a norm that does not depend on the Lorentz frame. Relativistically normalized states, denoted
by |py to distinguish them from |p⃗y, are

|py “
a

2ωp⃗ a
:

p⃗ |0y . (127)
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This result will be derived in the exercises; the corresponding derivation will be added here after-
wards.

3.3 Casimir effect

A recurring theme throughout this course will be the result that quantum fluctuations have non-
trivial physical consequences. Examples that we will consider later include the result that quantum
fluctuations can spontaneously break a symmetry that the classical theory has (Coleman-Weinberg
potential) and that quantum fluctuations can produce interactions between photons, even though
electromagnetic waves are non-interacting in the classical theory (Euler-Heisenberg Lagrangian).
A second, related theme is that in the corresponding calculations, divergences show up. Histori-
cally, these led (and actually still lead) to confusion, because it is not always straightforward to see
that these divergences occur in unphysical, un-measurable quantities and the physical, measurable
quantities are finite. The divergences are treated through regularization and renormalization.

In nature, the Casimir effect occurs for the electromagnetic field (that we will quantize in a few
weeks). It is a result of the fact that on a conducting plate, the electric field must vanish (because
otherwise it induces a current that counteracts the field). Thus, if we place two parallel, conducting
plates in a vacuum, the field has to satisfy boundary conditions, namely that it vanishes at the
location of both plates:

d

A A

Figure 2: Two parallel plates at distance d, each of area A.

We model this effect with a massless scalar field and simplify the situation to 1+1 dimensions, so
that we can forget about the directions parallel to the plates. Then, we impose boundary conditions

ϕp0q “ 0 “ ϕpdq. (128)

From this, it follows that the momentum is discrete, allowed values are

px “
nπ

d
, (129)

so that
ω2

p⃗ “ p⃗2 Ñ
nπ

d
, (130)

and the integral
ş

dpx

2π Ñ 1
d

ř8

n“1.
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Thus, the expression for the ground-state energy density is

ϵ “
x0|H|0y

d
“

1
d2

ÿ

n

nπ

d

ˆ

x0|a:

p⃗ap⃗|0y `
d

2

˙

“
1
2d

ÿ

n

nπ

d
. (131)

In contrast, the energy density outside of the plates is given by a continuous set of Fourier modes.
We note that the energy density between the plates is therefore lower than outside the plates.
Thus, we expect a force on the plates. This attractive force is exerted by the vacuum. It is the
Casimir force.

The expression for the ground state energy density is divergent. To calculate the Casimir force,
we need to regularize the divergence. We do so by multiplying each mode by e´α nπ

d and take the
limit α Ñ 0 at the end of the calculation.
Now comes the key physical point about our treatment of (most) divergences in QFT: We need to
distinguish divergences in unphysical (i.e., not measurable) quantities from divergences in physical
(i.e., measurable quantities). Divergences in unphysical quantities are not necessarily a problem.
Divergences in physical quantities are a problem and signal that the theory is not valid for the
problem that we have applied it to.
What typically happens in calculations of loop effects (or in other words, calculations that involve
quantum fluctuations) in QFT is, that unphysical quantities at some intermediate point of our
calculation diverge. Measurable quantities stay finite. In some sense, they just mean that we have
not set up our formalism in such a way that is best adapted to the physics.
In the concrete example, we clearly see that the ground-state energy density diverges. However, it
is not itself observable. Instead, the Casimir force is observable, so the key question is whether or
not the Casimir force diverges, when we remove the regularization.
Then, FCasimir “ ´

Bdp∆ϵq

Bd , where ∆ϵ is the difference in energy densities and dp∆ϵq the difference
in energies.

∆ϵ “
π

2d2

8
ÿ

n“1
n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
energy density

between the plates

´ lim
dÑ8

π

2d2

8
ÿ

n“1
n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
energy density

outside the plates

. (132)

We write the energy density outside the plates as limdÑ8, so that we can calculate the Casimir
force by subtracting two regularized quantities from each other, because the difference of two
divergent quantities is ill-defined.
Now we need to regularize the sum

ř8

n“1 n, and obtain:

FCasimir “ ´
B

Bd
d lim

αÑ0

˜

π

2d2

8
ÿ

n“1
ne´ αnπ

d ´ lim
dÑ8

π

2d2

8
ÿ

n“1
ne´ αnπ

d

¸

. (133)

We use

π

2d

8
ÿ

n“1
ne´ αnπ

d “ ´
1
2

B

Bα

8
ÿ

n“1
e´ αnπ

d (134)

“ ´
1
2

B

Bα

1
1 ´ e´απ{d

(135)

“
1
2

1
p1 ´ e´απ{dq2 e

´ απ
d
π

d
. (136)
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Thus,

“ñ FCasimir “ ´
B

Bd
d lim

αÑ0

ˆ

π

2d2
e

απ
d

peαπ{d ´ 1q2 ´ lim
dÑ8

π

2d2
e

απ
d

peαπ{d ´ 1q2

˙

. (137)

Now we take the limit α Ñ 0, for which we can expand the above expression up to the α0 term.
The series is a Laurent series, i.e., it starts with a negative power of α. This term diverges in
the limit α Ñ 0. This divergence is not an observable (measurable) quantity. In the measurable
quantity, namely the force, this divergence cancels. As emphasized above, this is a first example of
an important point in UV divergences in QFT, namely to carefully distinguish between divergences
in physical and unphysical quantities.

In fact, we find that the divergent parts of the energy density between and outside the plates
cancel:

FCasimir “ ´
B

Bd
d lim

αÑ0

ˆ

1
2πα2 ´

π

24d2 ´ lim
dÑ8

ˆ

1
2πα2 ´

π

24d2

˙˙

(138)

“ ´
B

Bd

ˆ

´
π

24
d

d2

˙

“ ´
π

24d2 (139)

Thus, we are finding a finite, attractive force between the plates. The dependence on d has been
tested experimentally, confirming our procedure. Note that the key point of properly dealing with
the divergences was to focus on an observable quantity. In this quantity, two formally divergent
expressions cancel, which makes the calculation subtle, but there is nothing problematic about it.
Note that our result says that

ř8

n“1 “ ´ 1
12 , at least in the context that we investigated here. In

fact, this equality also shows up when doing ζ-function regularization and renormalization. There,
the Casimir force is defined from an analytical continuation of the ζ-function, which implies the
above result. In this method of dealing with divergent, intermediate results, the regularization and
renormalization is done implicitly and it is conceptually less clear what one is doing.
Let us also stress that the final result for the Casimir force is independent of the choice of regu-
larization; confirming that we are extracting a prediction for a physical quantity (which must not
depend on arbitrarily chosen regularizations).

3.4 Quantum statistics

We know that multi-particle states which are antisymmetric (symmetric) under exchange of any
two particles contain fermions (bosons). Which one do we have in our Fock space? Because
”

a:

p⃗, a
:

q⃗

ı

“ 0, we have that |p1p2y “ |p2p1y and similarly for states with more particles. In detail,
we see the link between the statistics and the choice of commutator (over anticommutator, for
which ta:

p⃗, a
:

q⃗u “ a:

p⃗a
:

q⃗ ` a:

q⃗a
:

p⃗ as follows:

|p1p2y “ a:

p⃗1
a:

p⃗2
|0y “

´

ra:

p⃗1
, a:

p⃗2
s ` a:

p⃗2
a:

p⃗1

¯

|0y “ |p2p1y. (140)

This means that the particles are bosons. This result is the first example of the spin-statistics
theorem, which says that particles with integer spin are bosons and particles with half-integer spin
are fermions. Mathematically, the correct quantization for bosons is the one using the commutator
of creation and annihilation operators.
If we perform the same calculation with an anticommutator, we obtain |p2p1y “ ´|p1p2y, i.e., the
state changes by a sign under the exchange of two particles. This is Fermi-Dirac statistics, and
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results in the Pauli exclusion principle, where the state |p py “ 0, i.e., no two particles can be in
the same state.
In the exercises, we will learn what goes wrong, if we try to quantize using the anticommutator
(which would imply fermionic statistics, i.e., the Pauli exclusion principle). When we quantize spin
1{2 particles later in the lecture, we will learn that we must use the anticommutator, and that
therefore they satisfy Fermi statistics and the Pauli exclusion principle.

3.5 Interpretation of ϕpx⃗q

Now that we have constructed the Fock space, we can understand how ϕpx⃗q acts on the vacuum:

ϕpx⃗q |0y “? (141)

Mini-Exercise 9. Calculate the rhs of this expression. Use

ϕpx⃗q “

ż

d3p

p2πq3 e
ip⃗¨x⃗ϕ̃pp⃗q and ϕ̃pp⃗q “

1
a

2ωp⃗

pap⃗ ` a:

´p⃗q. (142)

Solution.

ϕpx⃗q |0y “

ż

d3p

p2πq3
eip⃗¨x⃗

a

2ωp⃗

pap⃗ ` a:

´p⃗q |0y

“

ż

d3p

p2πq3
eip⃗¨x⃗

a

2ωp⃗

a:

´p⃗ |0y

“

ż

d3p

p2πq3
1

a

2ωp⃗

e´ip⃗¨x⃗ a:

p⃗ |0y

²
|p⃗y

“

ż

d3p

p2πq3
1

2ωp⃗
e´ip⃗¨x⃗ |py .

This has the interpretation of a superposition of 1-particle states with different momenta. Because
we are integrating over all momenta, the result only depends on x⃗, in other words, ϕpx⃗q |0y is a
one-particle state at position x⃗. We will use this information later, when we discuss causality.

3.6 Heisenberg picture

So far, we have worked in the Schrödinger picture, where the field operators ϕpx⃗q and Πpx⃗q have no
time-dependence. Instead, the states evolve in time, |py “ |ppt “ 0qy and |pptqy “ e´iHt |ppt “ 0qy.
The relations between field operators and states that we have used so far are relations at t “ 0.
It is clearly not natural in a Poincaré-invariant theory to separate temporal and spatial dependence
from each other. Instead, we switch to the Heisenberg picture, where operators depend on space
and time and states are held fixed. The time dependence of any operator O follows from the
requirement

xψ|Optq|ψy
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Heisenberg

“ xψptq|O|ψptqy
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Schrödinger

. (143)
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In particular, the field operator becomes

ϕpxq “ eiHt

ż

d3p

p2πq3
1

a

2ωp⃗

´

ap⃗ e
ip⃗¨x⃗ ` a:

p⃗ e
´ip⃗¨x⃗

¯

e´iHt (144)

“

ż

d3p

p2πq3
1

a

2ωp⃗

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p˚q

´

ap⃗ e
´ipx ` a:

p⃗ e
ipx

¯

(145)

For the Lorentz invariance of the measure p˚q, see our discussion of state normalization. Note that
we now have 4-vector products in the exponents, i.e., px “ pµx

µ, which are also Lorentz invariant.

3.7 Causality

Causality is a key property of a QFT. Causality implies that operators at spacelike distances
commute and can therefore be measured simultaneously. It is one of the properties that is not
automatically built into Quantum Mechanics and that motivated us to develop a new formalism,
the QFT formalism.
In particular, the requirement that operators at spacelike distance should commute holds for ϕpxq,
i.e., we need rϕpxq, ϕpyqs “ 0 for px ´ yq2 ă 0 for causality to hold. Physically, this means that
the creation of a particle at x cannot affect the creation of a particle at y, if x and y are spacelike
separated.
Note that the equal-time-commutation relations in the Schrödinger picture, rϕpx⃗q, ϕpy⃗qs “ 0, do
not immediately imply causality; we need to check the commutator in the Heisenberg picture to
have the full spacetime-dependence of the operator.

rϕpxq, ϕpyqs “

ż

d3p

p2πq3
1

a

2ωp⃗

ż

d3q

p2πq3
1

a

2ωq⃗

´”

ap⃗, a
:

q⃗

ı

e´ipx`iqy `

”

a:

p⃗, aq⃗

ı

eipx´iqy
¯

, (146)

where we directly set the vanishing commutators among two a’s or two a:’s to zero.

rϕpxq, ϕpyqs “

ż

d3p

p2πq3
1

2ωp⃗
e´ippx´yq ´

ż

d3p

p2πq3
1

2ωp⃗
eippx´yq. (147)

This expression does not vanish for timelike distances, e.g., taking px´ yq “ pt, 0, 0, 0q, we get

rϕpx⃗, 0q, ϕpx⃗, tqs „ e´iωp⃗t ´ eiωp⃗t. (148)

This expression vanishes for spacelike separation. This follows, because rϕpx⃗, tq, ϕpy⃗, tqs vanishes,
which we can see from

rϕpx⃗, tq, ϕpy⃗, tqs “

ż

d3p

p2πq3
1
ωp⃗

´

eip⃗¨px⃗´y⃗q ´ e`ip⃗¨px⃗´y⃗q
¯

(149)

“ 0. (150)

We have flipped the sign of p⃗ by changing the integration variable p⃗ Ñ ´p⃗ in the second term.
However, rϕpxq, ϕpyqs must be a Lorentz invariant expression, because it is based on the Lorentz
invariant integration measure. Thus, it can only depend on px ´ yq2 and must therefore vanish
for all px ´ yq2 ă 0, irrespective of whether the two times are equal, since a boost of a spacelike
interval can always be used to bring the two points to equal times.
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Thus, causality is respected by our theory - which is not surprising, because we’re basing it on
Lorentz invariance and so the notion that nothing can propagate faster then light is built in.

3.8 A note on quantum entanglement:

Locality in QFT implies that local operators, defined at a single spacetime point, commute at
spacelike distances. At a first glance, one might wonder whether locality in QFT is not in con-
tradiction to entanglement in QM, where states can be entangled over spacelike distances, e.g.,
in EPR-states. However, the fact that in QFT local operators commute is not at odds with the
existence of entangled states. Consider the following example in QM, an entangled state of two
spin 1{2 particles, which can be at large spatial distance

|ψy “
1

?
2

p|Öy ´ |Œyq. (151)

S1, measuring the spin or particle 1, and S2, measuring the spin of particle 2, commute nevertheless,
and the expectation value of S2 is not changed by measuring S1.
Just like the states in QM can be non-local, the states in QFT are generically non-local; in our
discussion of the path-integral formalism we will see that states are represented as functionals of
the field configuration and depend on non-local information.

3.9 Propagators and causality

Literature suggestion: Peskin/Schröder.

There is a different question we could ask to probe the causal structure of the theory. We prepare a
particle at spacetime point y, by acting with ϕpyq on the vacuum. We the ask that the probability
amplitude is to find the particle at ϕpxq. This is encoded in the propagator

Dpx´ yq “ x0|ϕpxq
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

particle at x

ϕpyq |0y
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

particle at y

“ x0|ϕpxqϕpyq |0y , (152)

which is the probability amplitude for the particle to propagate from y to x.
We study its structure here for two reasons: First, at a physical level, we will achieve a crucial
insight into the physical reason why antiparticles (particles with the same mass and spin, but
opposite charges under internal symmetries, e.g., electric charge) must exist. Second, the techniques
of complex analysis that we will use, are useful in many other contexts in QFT and beyond, and
the propagator is a useful example to practise them with.
We might first expect that the propagator should vanish for spacelike distances. To evaluate
Dpx´ yq, we write

Dpx´ yq “

ż

d3p

p2πq3

ż

d3q

p2πq3
1

a

2ωp⃗

1
a

2ωq⃗

x0|

´

aq⃗ e
´iqx ` a:

q⃗ e
iqx

¯

¨

´

ap⃗ e
´ipy ` a:

p⃗ e
ipy

¯

|0y

(153)

“

ż

d3p

p2πq3
1

2ωp⃗
e´ippx´yq, using ap⃗ |0y “ 0 “ x0| a:

q⃗ and rap⃗, a
:

q⃗s “ p2πq3δ3pp⃗´ q⃗q.

(154)
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This expression already looks like it will be non-zero for spacelike distances, but let us evaluate it
to see what exactly its form is.
First, we reduce the three-dimensional integral to a one-dimensional integral over the modulus of
p⃗, i.e., |p⃗|. This works as follows: Because we focus on spacelike distances (px ´ yq2 ă 0), we can
pick x0 “ y0 and name x⃗´ y⃗ “ r⃗, so that

Dpx´ yq

ˇ

ˇ

ˇ

ˇ

px´yq2ă0
“

ż

d3p

p2πq3
1

2ωp⃗
eip⃗¨r⃗ (155)

“
2π

p2πq3

ż 8

0
d|p⃗|

|p⃗|
2

2ωp⃗

ei|p⃗||r⃗| ´ e´i|p⃗||r⃗|

i|p⃗||r⃗|
. (156)

In this step, we rewrote
ż

d3p “

ż 8

0
d|p⃗| |p⃗|

2
ż π

0
sin θ dθ

ż 2π

0
dφ and p⃗ ¨ r⃗ “ |p⃗||r⃗| cos θ. (157)

We used
ż π

0
dθ sin θeiα cos θ “

2 sinα
α

and 2 sinα “ ie´iα ´ ieiα for α “ |p⃗||r⃗|. (158)

In the next step, we change variables according to |p⃗| Ñ ´|p⃗| in the 2nd term, so that the integral,
instead of ranging from 0 to 8, ranges from ´8 to `8.
We thus have that

Dpx´ yq

ˇ

ˇ

ˇ

ˇ

px´yq2ă0
“

´i

2p2πq2 |r⃗|

ż 8

´8

d|p⃗|
|p⃗|ei|p⃗||r⃗|

b

|p⃗|
2

`m2
. (159)

This is actually an integral representation of a Hankel function, so we could just use that re-
sult, together with the asymptotic form of the particular Hankel function for large r to obtain
Dpx´ yq

ˇ

ˇ

px´yq2ă0 „ e´m r. However, to get a better idea why that happens, and to practise
techniques of complex analysis, we will arrive at that result differently.
In the complex plane (in this case, the complex-|p⃗|-plane), we can use Cauchy’s integral theorem.
The theorem says that the integral of a function over a closed curve in the complex plane vanishes,
if the function is infinitely differentiable and locally identical to its Fourier series (i.e., if it is a
holomorphic function). (If the function has poles, then the integral will pick up the corresponding
residue.) This allows us to deform integration contours, by starting from the integral along the
real axis and completing it by some contour through the complex plane, so that together, the real
axis and the new part of the contour form a closed curve. By the theorem, the original integral
along the real axis is equal to (minus) the integral along that contour.
What we have to watch out for when doing such deformations, are poles (where the function is
singular) and branch cuts (where the limit of the function, taken from both sides of the branch
cut, is not equal, i.e., the function is multi-valued).
We encounter a simple example of a branch cut for the function

?
z with z P C. This example will

be relevant for our case. In the complex plane, we can parameterize z through its modulus and a
phase

?
z “

?
r eiθ “

?
r

ˆ

cos
ˆ

θ

2

˙

` i sin
ˆ

θ

2

˙˙

, with θ P p´π, πq. (160)
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branch cuts are usually 
indicated by zig-zaging lines

-
For z P R, we have that θ “ 0. Positive imaginary z has θ “ π{2 and negative imaginary z has
θ “ ´π{2. Negative real z can be approached coming from positive imaginary parts (with θ Ñ π)
or from negative imaginary parts (with θ Ñ ´π). It turns out that

?
z is discontinuous across the

negative real axis, i.e., it has a branch cut. We can see the discontinuity as follows:

lim
pr,θqÑpr0,πq

?
r

ˆ

cos
ˆ

θ

2

˙

` i sin
ˆ

θ

2

˙˙

“
?
r0 i, (161)

lim
pr,θqÑpr0,´πq

?
r

ˆ

cos
ˆ

θ

2

˙

` i sin
ˆ

θ

2

˙˙

“
?
r0 p´iq. (162)

In the integral that we are interested, there is a branch cut when |p⃗|
2

`m2 becomes negative. This
translates into |p⃗| being purely imaginary and the imaginary part either being positive and greater
than m, or negative and smaller than ´m.
Therefore, there are branch cuts on the imaginary axis, starting at ˘im. This means that the
integrand is discontinuous across this line:

lim
εÑ0

|p⃗|ei|p⃗|r

b

|p⃗|
2

`m2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

|p⃗|“im`ε

­“ lim
εÑ0

|p⃗|ei|p⃗|r

b

|p⃗|
2

`m2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

|p⃗|“im´ε

(163)

The branch cuts start in the singular branch points at |p⃗| “ ˘im. In the presence of a branch cut,
we shift the integration contour upwards, so that it wraps around the branch cut, but never crosses
it. The difference between the original contour and this contour vanishes because of Cauchy’s
theorem: Due to Cauchy’s residue theorem, the integral along the curve C “ 1 ` 2a ` 3 ` 2b
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-V
vanishes, because there’s no singularity that is enclosed. In addition, the integrals along 2a and

2b (which are meant to lie at infinity) vanish. Thus, the integral along 1 is equal to the integral
along 3 (followed from right to left).
Because we saw previously that

?
z differs by an overall sign across the branch cut, the integral

along the right and the left part of the branch cut add up and we obtain

Dpx´ yq

ˇ

ˇ

ˇ

ˇ

px´yq2ă0
“

´i

2p2πq2 |r⃗|lim
ϵÑ0

¨

˝

ż im`ϵ

i8`ϵ

d|p⃗|
|p⃗|ei|p⃗||r⃗|

b

|p⃗|
2

`m2
`

ż i8´ϵ

im´ϵ

d|p⃗|
|p⃗|ei|p⃗||r⃗|

b

|p⃗|
2

`m2

˛

‚

“
´i

p2πq2 |r⃗|

ż i8

im

d|p⃗|
|p⃗|ei|p⃗||r⃗|

b

|p⃗|
2

`m2

“
1

p2πq2
1

|r⃗|

ż 8

m

dρ ρ
e´ρ|r⃗|

a

ρ2 ´m2
, (164)

where in the last step we defined ρ “ ´i|p⃗|.
We are only interested in the behavior at rm " 1, i.e., distances large compared to the scale set by
the mass, in which case the integrand is suppressed for all values of ρ, except for the point ρ “ m.
Thus we obtain

Dpx´ yq

ˇ

ˇ

ˇ

ˇ

px´yq2ă0

|r⃗|m"1
“ e´m|r⃗|. (165)

Thus, there is a nonzero probability amplitude for a particle to propagate outside the lightcone.
This seems worrisome. Does this mean that our theory violates causality? The answer is no,
because this does not affect measurements, i.e., it is a property of the theory we can never test in
an experiment (or use for faster-than-light signalling). In fact,

rϕpxq, ϕpyqs “ Dpx´ yq ´Dpy ´ xq “ 0 for px´ yq2 ă 0. (166)

Thus, the quantum amplitude for the particle to propagate over a spacelike distance from y to x
interferes destructively with the quantum amplitude for a particle to propagate from x to y. Such a
destructive interference makes sense, because, if x and y are spacelike to each other, the temporal
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order of the two is not fixed and can be changed. Therefore, it is equally viable to consider
propagation from x to y as it is from y to x and thus both processes occur. Their quantum
amplitudes cancel when we consider a measurement.
Note that this would be different, if x and y were timelike to each other, because then only one
direction of travel makes sense; the other one would be against the direction of time.
In a complex scalar theory, it gets even more interesting, because we can consider the commutator

“

ϕpxq, ϕ:pyq
‰

“ x0|ϕpxq ϕ:pyq |0y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

describes particle
propagating from

y to x

´ x0|ϕ:pyq ϕpxq |0y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
describes antiparticle

propagating from
x to y

. (167)

This is a profound result: it tells us that antiparticles must exist for QFT to be causal. It is not
a choice to have or not have antiparticles. They are a necessity for a causal theory. (In the case
of a real scalar field we did not see that clearly, because an uncharged scalar, described by a real
scalar field, is its own antiparticle.)

4 Path-integral quantization for the scalar field

(See Gelis, Ryder, Franklin, Srednicki)
This approach to quantum physics places the superposition principle - that more than one clas-
sical realization of a system is realized at the same time - center stage. For a single particle, it
means that if it is in a momentum eigenstates, it is in a superposition of position eigenstates, e.g.,
completely delocalized. For a field, it means that the relevant entity is not a single configura-
tion of the scalar field (which we can associate to particles at some positions). Rather, all field
configurations which are compatible with boundary of initial conditions are realized at the same
time and interfere destructively or constructively. In terms of particles, this means that we never
have a constant number of particles, but that in addition to the real particles, there are virtual
particles in our theory, which are only there for short amounts of time, before they disappear again.

Mathematically, instead of working with operators on a Hilbert space, we work with functionals,
i.e., maps from the space of functions (field configurations) to the real (complex) numbers. We
will introduce the necessary mathematical concepts as we go along and partially in the exercises.

Conceptually, besides providing a different (complementary) intuition about QFT than the canon-
ical formalism, the path-integral formalism is also manifestly Lorentz invariant.

In Quantum Mechanics and in Quantum Field Theory, the canonical formalism and the path-
integral formalism are equivalent. In quantum gravity, the situation is unclear. There are ap-
proaches to quantum gravity, in which spacetime as a whole is quantized in such a way that a
Hamiltonian cannot be written down, just an action and a path integral (e.g., causal set theory).

Our plan for the next few lectures is to:

• derive path integral for QM

• generalize path integral to QFT
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• introduce interactions

• first application: introduce interactions and understand the effect of quantum fluctuations:
symmetry breaking in the one-loop effective potential.

4.1 Path-integral for Quantum Mechanics

We will now derive an expression for the probability amplitude for a particle to propagate from
position qi to position qf that is a superposition of all paths, each one weighted with a complex
amplitude that results in (constructive or destructive) interference between paths.
Consider QM for a single classical degree of freedom, described by the Hamiltonian

H “
P 2

2m ` V pQq, (168)

with momentum operator P and position operator Q, and commutator rQ,P s “ i. The probability
for the particle to start at the initial position qi and end at the final position qf after time tf ´ ti

is given by:
ˇ

ˇ

ˇ
xqf | e´iHptf ´tiq |qiy

ˇ

ˇ

ˇ

2
. (169)

We will derive the path-integral expression for the amplitude. The intuition underlying the path
integral can be obtained by starting from the double slit, in which this transition has two major
contributions, one from each path, see left panel in Fig. 3. Then we imagine generalizing the 2
slits to n slits and the one barrier to m barriers, see right panel in Fig. 3.

9f
9i ·

Figure 3: Left panel: we show the two possible paths in the double-slit experiment. Right panel:
we show the generalization to m barriers with n slits in each and a subset of all possible paths in
this setup.

As we take n Ñ 8 and m Ñ 8, we obtain all possible paths between qi and qf that a freely
propagating particle can take, see Fig. 4.
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Figure 4: The generalization contains all possible paths that we can imagine, some of which are
shown in this sketch to illustrate the concept.

This is what the propagating particle (in a potential V pQq) does. Just like the two paths interfere
in the double-slit setup, all paths for the freely propagating particle interfere. As it turns out,
paths far away from the classical path interfere destructively, so that the transition probability
amplitude is dominated by the classical path and fluctuations around it.

Before we derive the expression for the path integral and the expression for the quantum amplitude
associated to each path, we can already develop some intuition for what the result should be. We
take the following steps in our argument that motivates the result:

1) We are looking for a quantum amplitude, i.e., a quantity that can in general be complex
and whose absolute value can never exceed 1, so that it has a probability interpretation.
This suggests that we can write the quantum amplitude as expri As, with some A that we
need to determine and that is real and depends on the path that we are considering, i.e.,
A “ Arpaths.

2) We consider how constructive and destructive interference between different paths can be
encoded in this quantity: if we compare the quantum amplitudes expri Arpathss for two
different paths, and they differ exactly by their sign, then they cancel in the final expression.
In contrast, if the amplitudes are close to each other in their value in the complex plane,
then they contribute to the final expression.

3) We consider the classical path for the freely propagating particle. We know from Quantum
Mechanics lectures that the expectation value of the position of the particle should follow the
classical path. Therefore, we want that expri Arpathss varies slowly across different paths
that are close to the classical one. This already gives us a hint, what Arpaths could be,
because we know that the action has an extremum for the classical path and therefore varies
slowly for paths close to it.

4) We cross-check our expectation that expri Srpathss, with S the action, could be a good
candidate for the quantum amplitude for each path with the expectation that A should be a
Lorentz-invariant expression, which S indeed is.

This line of reasoning leads us to a well-motivated expectation that the path integral may contain
a factor ei S for each path that will be included.
Of course this is absolutely not a derivation; it’s just a way to obtain some intuition for what we
might expect. We will now do a proper derivation of the path integral.
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For the derivation, our ultimate goal is to start from the transition amplitude, written in terms of
operators acting on states, and convert it into a (function) integral over all paths, where each path
is weighted by a quantum amplitude that is a complex number, not an operator. Thus, the steps
of our derivation will be aimed at getting rid of operators and exchanging them for eigenvalues.
We subdivide the time interval rti, tf s into N small time intervals, so that we can keep track of
what the particle does in the small intervals. We introduce

∆ “
tf ´ ti
N

, tn “ ti ` n∆, (170)

so t0 “ ti, tN “ tf , so that we can write the transition amplitude in terms of the many intermediate
positions.
Now we can factorize

e´iHptf ´tiq “ e´iHptN ´tN´1qe´iHptN´1´tN´2q . . . e´iHpt1´t0q, (171)

which is possible because H at successive times commute. Between these successive factors on the
right-hand-side, we can insert the identity operator as a sum over position eigenstates, in order to
express the transition amplitude in terms of the positions at successive times:

1 “

ż 8

´8

dq |qyxq| . (172)

Because we will need the identity operator multiple times, and it would lead to confusion if each of
the dummy integration variables was called q, we will instead introduce dummy variables qj with
j “ 1, 2, . . . for the identity operator inserted at successive times t1, t2, . . . . This will eventually
allows us to convert the V pQq in H into V pqnq, the position at time tn.

xqf | e´iHptf ´tiq |qiy “

ż N´1
ź

j“1
dqj xqf | e´iH∆ |qN´1y xqN´1| e´iH∆ |qN´2y . . . xq1| e´iH∆ |qiy . (173)

Because the time interval consists of N parts, there are N ´ 1 factors of 1 to insert inbetween
successive factors of e´iH∆. Now, there is a slight complication, namely that the two terms in H,
P 2

2m and V pQq, do not commute, because rQ,P s “ i. This makes it difficult to split eiH∆ into ei P 2
2m

and eiV pQq and use eiV pQq |qny “ eiV pqnq |qny.
However, we can use a trick: We can use the Baker-Campbell-Hausdorff-formula:

e∆pA`Bq “ e∆Ae∆Be´ ∆2
2 rA,Bs`Op∆3

q. (174)

For ∆ Ñ 0 (i.e., N Ñ 8), the ∆2 - and all higher-order factors are negligible. Then, in the limit
∆ Ñ 0, we can use

xqi`1| e´i∆H |qiy “ xqi`1| e´i∆ P 2
2m e´i∆V pQq |qiy ` Op∆2q (175)

“ xqi`1| e´i∆ P 2
2m e´i∆V pqiq |qiy ` Op∆2q. (176)

This contains the eigenvalue qi of the position operator, but it still contains the momentum operator
P itself. To convert it into its eigenvalue, we insert the identity operator written in terms of
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Figure 5: We illustrate the position of the particle at consecutive moments in time, as it enters
the expression (181). There is no actual “path”; the connecting lines between the points are just
to guide the eye. The “paths” are not continuously differentiable.

momentum eigenstates
ż

dp

2π |pyxp| “ 1. (177)

Just like for the position operator, we will use a dummy integration variable labelled by the time
at which we insert the identity into the whole expression. Thus we obtain

xqi`1| e´i∆H |qiy “

ż

dp

2π xqi`1| e´i∆ pi
2m |piy e

´i∆V pqiq xpi|qiy ` Op∆2q. (178)

We already exchanged the operators in our expression for their eigenvalues, thus we can also pull
the factor e´i∆ pi

2m out of the matrix element. However, we still have states, which we want to
exchange for (complex) numbers next. Thus, we use that

xq|py “ eipq, (179)

and arrive at
xqi`1| e´i∆H |qiy “

ż

dpi

2π e
´i∆Hppi,qiqeipipqi`1´qiq ` Op∆2q. (180)

Note that Hppi, qiq is now a number, no longer an operator and the right-hand side in general no
longer contains operators (just their eigenvalues), nor states.
It remains to interpret e´i∆Hppi,qiqeipipqi`1´qiq. To do so, we next note that qi`1´qi

∆ “ 9qi is the
discretization of the time-derivative of qi. Overall, we thus have

xqf | e´iHptf ´tiq |qiy “ lim
NÑ8

˜

ż N´1
ź

j“1
dqj

¸˜

N
ź

j“1

dpj

2π

¸

e´i∆Hppj ,qj qei∆pj 9qj . (181)

Let us illustrate this expression, see Fig. 5. Note that there are N ´ 1 integrations over qj , because
we inserted a ⊮ expressed in position eigenstates inbetween each of the factors of ei∆H . This gives
rise to N matrix elements of the form xqi`1| e´i∆H |qiy and we insert a ⊮ expressed in terms of
momentum eigenstates inside each such matrix elements, so that we end up with N integrations
over pj .
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Taking the N Ñ 8 limit, we see that e´i ∆ Hppi,qiq will become e´i
ştf
ti

dt Hppptq,qptqq (and similarly
for the other factor in the exponential. We thus obtain

xqf | e´iHptf ´tiq |qiy “ N
ż

qptiq“qi

qptf q“qf

DpptqDqptq ei
ştf
ti

dt ppptq 9qptq´Hpp,qqq, (182)

where we introduced a normalization N . This is the path-integral representation of the transition
amplitude in its phase-space form. The measures Dpptq and Dqptq indicate that we are not in-
tegrating over numbers dp, dq, but over functions qptq and pptq. The path-integral is therefore a
functional integral.

Comments:

• There are no initial and final conditions on the momentum, because the position is sharp at
beginning and end, and so the momentum must be totally unconstrained.

• The right-hand-side contains ordinary commuting numbers, while the light-hand-side con-
tains operators.

• We derived the path integral from the canonical formulation of QM. However, we may also
“forget” about this origin and view the path integral as the definition of the quantum theory.

• The physical intuition behind the path integral is that all possible phase-space configurations
tpptq, qptqu are realized simultaneously and each is weighted by a phase factor ei

ş

dt pp 9q´Hq,
which encodes quantum mechanical interference.

• The functional measure DqptqDpptq in general lacks a solid mathematical foundation. Nev-
ertheless, the formalism allows us to make progress in QFT, where the canonical formalism
would prove extremely challenging and cumbersome. Wherever both formalisms can be used
in practical calculations, they produce results that are in agreement.

In QFT, the form of the path integral that is used most is not a phase-space path integral, but
one, where the momentum-integration has already been performed.
This can be done in theories in which the momentum only occurs quadratically, as we have assumed.
In this case, we can perform the integral over pptq, because it is a Gaussian functional integral.
We generalize

ż 8

´8

dx e˘ ix2
2σ “

?
2πσe˘i π

4 . (183)

(Note that this looks as if we took
ş8

´8
dx e´ x2

2σ “
?

2πσ and simply made it complex. This is not
the case. The correct derivation relies on the integral along the real axis, but then uses Cauchy’s
residue theorem.)

To use this, we go back to the path integral before taking the N Ñ 8 limit. We treat each pi as
an independent variable and perform the Gaussian integral to obtain

ż

Dp ei∆pp 9q´
p2
2m q “ ei π

4

c

2πm
∆´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

this prefactor is
independent of q, 9q

ei ∆m 9q2
2 . (184)
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We absorb the prefactor into the (undetermined) normalization constant N . We will soon see that
N drops out of computing observables. Therefore, it does not matter that N contains a factor that
diverges for ∆ Ñ 0. We thus arrive at the path integral in the form

xqf | e´iHptf ´tiq |qiy “

ż

qptiq“qi

qptf q“qf

Dqptq ei
ştf
ti

dt Lpqptqq, (185)

because L “
m 9q2

2 ´ V pqq. Therefore,

xqf | e´iHptf ´tiq |qiy “

ż

qptiq“qi

qptf q“qf

Dqptq eiSrqptqs. (186)

This is also known as the Feynman-Kac-formula.

4.2 Classical action, least-action principle

We have worked with ℏ “ 1, so let us briefly reinstate ℏ. We know that rSs “ rℏs and we know
that the argument of the exp cannot contain units. Thus, without redoing the calculation with ℏ
back in place, we know that the result has to be

xqf | e´i H
ℏ ptf ´tiq |qiy “

ż

qptiq“qi

qptf q“qf

Dq e i
ℏ Srqs. (187)

The rhs is a wildly oscillatory integral, with the following properties:

1) e
i
ℏ S is a pure phase factor, i.e.,

ˇ

ˇ

ˇ
e

i
ℏ S

ˇ

ˇ

ˇ
“ 1 for all qptq.

2) If Srqptqs changes slowly over neighboring paths, these contribute with a similar phase to the
overall integral, i.e., they interfere constructively.

3) If Srqptqs changes rapidly across neighboring paths, we find that the contributions cancel
each other, because they, roughly speaking, contribute with opposite sign.

Mini-Exercise 10. Based on properties 2) and 3), argue why you would expect a main
contribution to the path integral from the classical paths, i.e., those paths that satisfy the
classical equations of motion, and paths close to them.

Solution. Classical paths satisfy δS “ 0, i.e., the action varies slowly.

4.3 Time-ordered products and generating functional

Before we make the transition to QFT, we need to develop a few more tools. With the QFT-
application in mind, we will in particular develop those tools useful in QFT, which may not be the
most important quantities in QM. Thus, why we are focusing on the specific quantities that we
are will become clearer later in the course. For now we are just developing a toolbox, and we will
come back to asking physical questions soon. When we will do so, we will have the tools available
to answer them.
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We are not only interested in transition amplitudes, but also in other quantities, e.g., expectation
values. We will now see that these also have a path-integral representation. Consider the matrix
element

xqf | e´iHptf ´tI qQe´iHptI ´tiq |qiy , (188)

which measures the amplitude for the transition between qi and qf withQ acting at the intermediate
time tI , with ti ă tI ă tf . To evaluate this, we write

Q “

ż

dq dq1 |qy xq|Q
ˇ

ˇq1
D

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
q δpq´q1q

@

q1
ˇ

ˇ (189)

“

ż

dq q |qyxq| . (190)

By repeating the remainder of our previous path-integral derivation, but with this insertion, we
arrive at

xqf | e´iHptf ´tI qQe´iHptI ´tiq |qiy “

ż

qptiq“qi

qptf q“qf

Dq qptIqeiSrqs. (191)

Similarly, we can consider several Q1s inserted at different times. In QM, these are not necessarily
the quantities we are most interested in. However, as we will see later in the course, when we discuss
the scattering of particles, the analogous expressions in QFT are central to the theory. Thus, we
check that they can be written in terms of the path integral in QM. If we have Qpt1qQpt2q, with
Qptq “ eiHtQe´iHt, we see that the order of the Q1s matters, because Q does not commute with
the P 2-term inside H. Thus we consider the time-ordered products

TQpt1qQpt2q “

$

&

%

Qpt1qQpt2q, if t1 ě t2

Qpt2qQpt1q, if t2 ą t1
(192)

(with Qptq “ eiHtQe´iHt and |q, ty “ eiHt |qy.)
We have, by the same procedure of inserting Qpt2{t1q in the derivation,

xqf , tf |T pQpt1qQpt2qq |qi, tiy “

ż

qptiq“qi

qptf q“qf

Dq qpt1qqpt2qeiSrqs. (193)

Note that the right-hand-side contains commuting numbers qpt1q, qpt2q, thus the time-ordering on
the left is crucial for the equality, because otherwise we would have to account for extra commu-
tators that have no counterpart on the right-hand-side. The generalization to n factors is direct

xqf , tf |T pQpt1q . . . Qptnqq |qi, tiy “

ż

qptiq“qi

qptf q“qf

Dq qpt1q . . . qpt2qeiSrqs. (194)

In QM, these are not necessarily the matrix element that are most interesting for us. In QFT,
however, the generalization qptq Ñ fieldptq with such time-ordered correlators will be absolutely
crucial. Therefore, it will be very useful to us to “package” all such matrix elements with n factors
into a generating functional

Zfir jptq
Ò

source

s “ xqf , tf |Tei
ştf
ti

dt jptqQptq
|qi, tiy , (195)
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from which
xqf , tf |T pQpt1q . . . Qptnqq |qi, tiy “

δnZfirjs

inδjpt1q . . . δjptnq

ˇ

ˇ

ˇ

ˇ

j“0
. (196)

The path-integral representation of the generating functional is

Zfirjptqs “

ż

qptiq“qi

qptf q“qf

Dq eiS`i
ştf
ti

dt jptq qptq. (197)

4.4 Functional differentiation

Above we have introduced functional derivatives, denoted by δ
δjptq

, which are derivatives with
respect to a function, not with respect to a c-number quantity. Instead of dx

dx “ 1, it therefore
holds that

δfpxq

δfpx1q
“ δpx´ x1q, (198)

with δpx´ x1q being the “1” in the space of functions.
More formally, just like the limit of a finite difference defines a standard derivative, we can define
a functional derivative of the functional F rϕs by:

ż

dx
δF rϕs

δϕpxq
ϵpxq ` Opϵ2q “ F rf ` ϵs ´ F rf s, (199)

where ϵpxq is understood as a small change of ϕpxq, i.e., it should be small everywhere (and possibly
with compact support).
We denote functionals by angular brackets around their arguments (which are functions). Note
that a functional maps a function to a number. The action Srϕs is a good example: It takes a
function ϕpxq, and, by integrating its Lagrange density Lpϕq (which is itself a function of x through
its dependence of ϕ and its derivative at each individual point), maps the whole configuration ϕ

to a single number.
Based on the definition Eq. (199), we can derive that

δ

δϕpyq
ϕpxq “ δdpx´ yq, (200)

as follows (we’ll write the derivation for d “ 1): We consider the particular functional

Fδrf s “

ż 8

´8

dx δpx´ yqfpxq. (201)

From the definition Eq. (199), it follows that
ż

dx
δFδrf s

δfpxq
ϵpxq “

ż 8

´8

dx δpx´ yqpfpxq ` ϵpxqq ´

ż 8

´8

dx δpx´ yqfpxq “ ϵpyq. (202)

For the left-hand side to be equal to the right-hand-side, it must hold that

δFδrf s

δfpxq
“ δpx´ yq. (203)
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Thus we have that

δpx´ yq “
δFδrf s

δfpxq
“

δ

δfpxq

ż 8

´8

dx δpx´ yqfpxq “
δ

δfpxq
fpyq. (204)

For functional derivatives, there is a product rule

δ

δϕpxq
pF rϕsGrϕsq “

δF rϕs

δϕpxq
Grϕs ` F rϕs

δGrϕs

δϕpxq
, (205)

and a chain rule
δ

δϕpxq
F rGrϕss “

ż

dy
δF rGs

δGpyq

ˇ

ˇ

ˇ

ˇ

G“Grϕs

δGrϕpyqs

δϕpxq
. (206)

Mini-Exercise 11. Check that

´i
δZfirjptqs

δjpt1q

ˇ

ˇ

ˇ

j“0
“

ż

qptiq“qi

qptf q“qf

Dq ei Srqsqpt1q. (207)

Solution.

´i
δZfirjptqs

δjpt1q

ˇ

ˇ

ˇ

j“0
“ ´i

δ

δjpt1q

ż

qptiq“qi

qptf q“qf

Dq eiS`i
ş

dt jptq qptq
ˇ

ˇ

ˇ

j“0
(208)

“ ´i

ż

qptiq“qi

qptf q“qf

Dq i
ˆ

ż

dt δpt´ t1qqptq

˙

eiS`i
ş

dt jptq qptq
ˇ

ˇ

ˇ

j“0
(209)

“

ż

qptiq“qi

qptf q“qf

Dq qpt1qeiS (210)

4.5 Projection onto the ground state at asymptotic times

Suggested reading for this section: Sec. 5.5 in Ryder; QFT I+II lecture notes from Heidelberg
U. by Timo Weigand...
In QM, we typically care about transition states between states that are not the ground state. In
QFT, for many problems, we are actually interested in a vacuum-to-vacuum transition amplitude,
or the correlators evaluated in the ground state. The reason is twofold:
First, as we already had a glimpse of when we discussed the Casimir effect, already the vacuum
(or ground state) is quite non-trivial in a QFT.
Second, we often care about a description of particle scattering events (e.g. at the LHC, or in a
cosmic-ray shower, or in the IceCube neutrino detector. . . ), where the particle(s) of interest are
created (e.g., by collision), they interact and then they are destroyed (e.g. by detection).
The act of creation may be represented by a source and that of destruction (which is also, in
some sense, a source). The boundary conditions of the problem may then be represented as in
the following figure, where the vacuum at t “ ´8 evolves into the vacuum at t Ñ `8, via the
creation, interaction and destruction of particles, through the agency of a source. We are thus
interested in

x0,8|0,´8y . (211)
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particles destroyed

particles created

-

-

Figure 6: We sketch the idea behind the source acting over a finite amount of time.

How do we obtain it from

@

Q1, T 1
ˇ

ˇQ,T
D

“

ż

qpT 1
q“Q1

qpT q“Q

Dq ei
şT 1

T
dt pL`Jqq ? (212)

We will consider this still in QM and then generalize to QFT.
We assume J “ Jptq and J “ 0 for t ă t2 and t ą t1, with T ă t2 and t1 ă T 1, i.e., the source is
switched on after the asymptotic time T and switched off before the asymptotic time T 1.
To distinguish whether the source is present or not, we write xq1, t1|q2, t2y

J if J is nonzero for (part
of) the time inbetween t1 and t2, t2 ă t ă t1 and otherwise, we leave out the J . Thus we consider

@

Q1, T 1
ˇ

ˇQ,T
D

“

ż

dq1 dq
@

Q1, T 1
ˇ

ˇq1, t1
D @

q1, t1
ˇ

ˇq, t
DJ

xq, t|Q,T y . (213)

We can write
@

Q1, T 1
ˇ

ˇq1, t1
D

“
@

Q1
ˇ

ˇ e´iHT 1

eiHt1 ˇ

ˇq1
D

, (214)

where we used |q, ty “ e´iHt |qy.
We ultimately want to rewrite this into an expression containing the ground state and so it makes
sense to use a complete set of energy eigenstates next. We write this as

ˇ

ˇq1, t1
D

“
ÿ

n

eiHt1

|ny
@

n
ˇ

ˇq1
D

“ |0y
@

0
ˇ

ˇq1
D

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
assuming E0“0

`
ÿ

|ny­“|0y

eiEnt1

|ny
@

n
ˇ

ˇq1
D

. (215)

For simplicity, we symbolize the energy eigenstates by the label “n” and write a sum over them.
It doesn’t matter for our derivation if they are actually continuous.
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This leads to

@

Q1, T 1
ˇ

ˇq1, t1
D

“
ÿ

n

xn| eiEnpt1
´T 1

q |ny xQ|nyxq1|ny (216)

“ x0|0y
@

Q1
ˇ

ˇ0
D @

0
ˇ

ˇq1
D

`
ÿ

|ny­“|0y

xn| eiEnpt1
´T 1

q |ny
@

Q1
ˇ

ˇn
D @

n
ˇ

ˇq1
D

. (217)

To isolate the contribution from the vacuum state, which is the one that we are interested in, we
change T 1 Ñ 8p1 ´ iεq and T 2 Ñ ´8p1 ´ iεq, with ε ą 0. Then,

eiEnpt1
´T 1

q Ñ eiEnpt1
´T 1

p1´iεqq “ eiEnpt1
´T 1

q´εT 1En . (218)

The term „ ε is an exponential suppression factor. In the limit T 1 Ñ 8, it results in a suppression
of all states that are not the ground state. Thus, we obtain

lim
T 1

Ñ8p1´iεq

T Ñ´8p1´iεq

@

Q1, T 1
ˇ

ˇQ,T
D

„ x0,8|0,´8y , (219)

or, in terms of the path integral:

x0,8|0,´8y “ N
ż

Dq ei
ş

8

´8 pL`Jq` 1
2 iεq2q. (220)

Note that we have dropped proportionality factors, that we just absorb in the overall normalization
of the path integral. They drop out of physical observables.
Similarly, for vacuum expectation values of operators, we have a similar path integral. It doesn’t
have any boundary conditions; it is simply the path integral over all functions.

4.6 Path integral in quantum field theory

The path-integral formalism can be generalized from QM to QFT. It provides a framework that
in many cases is easier to deal with (e.g., when formulating the theory of the strong interactions,
QCD). Also, it provides a conceptually different way of thinking about QFT, where, just like in
the multi-split-setup in QM, all field configurations are realized at the same time and interfere
destructively and constructively.
We generalize from QM to QFT by

qptq Ñ ϕpxq (221)

pptq Ñ Πpxq (222)

jptq Ñ jpxq. (223)

Herein, the arguments x of the fields and source are understood as spacetime arguments, i.e., ϕ
etc. depend on spatial coordinates and time.
The main results from QM generalize and we obtain a generating functional

Zrjs “

ż

DΠpxqDϕpxq ei
ş

d4x pΠpxq 9ϕpxq´p1´iεqH`jpxqϕpxqq. (224)
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Because H is quadratic in Πpxq,

H “
1
2Π2 `

1
2 p∇ϕq

2
`

1
2m

2ϕ2 ` V pϕq, (225)

we can perform the Gaussian functional integral over Πpxq and obtain

Zrjs “

ż

Dϕpxq ei
ş

d4x pLpϕq`jpxqϕpxqq “

ż

Dϕ eiS`
ş

jϕ. (226)

The generating functional generates correlation functions, which are expectation values of the field
at different spacetime points,

xϕpx1q . . . ϕpxnqy “ in
δ

δjpx1q
. . .

δ

δjpxnq
Zrjs “

ż

Dϕϕpx1q . . . ϕpxnqeiS`
ş

jϕ. (227)

These correlation functions tell us about the expectation value of the field in the vacuum and the
correlations between field values at different points. When we remember that in the canonical
formalism, ϕpxq acting on the vacuum generates a particle, we can see that the correlators give us
information on the amplitude for a particle to propagate from one point to another (for xϕpxqϕpyqy)
and the amplitudes for three, four etc particles to interact. Therefore, these correlation functions
will later become important, when we describe particle scattering in quantum field theory. We will
come back to them later and develop a better and more detailed understanding of them.
Let us contrast classical field theory and quantum field theory: Classically, a single field configu-
ration ϕclasspxq is realized, for which

δS

δϕ

ˇ

ˇ

ˇ

ˇ

ϕ“ϕclass

“ 0. (228)

In QFT, all field configurations are realized at the same time. Each comes with a complex phase fac-
tor eiSrϕs, that results in destructive/constructive interference between field configurations. When
S varies slowly, the interference is constructive, because “neighboring” configurations have nearly
the same phase factor eiS . Thus, we expect that a main contribution to the path integral actually
comes from the classical field configurations. In contrast, field configurations far from the classical
ones have a quickly varying phase factor eiS , which oscillates between `1 and ´1 quickly, and thus
these cancel out or interfere destructively.
Overall, the path integral formalism provides a different, and highly useful, intuition for the physics
of QFT, as well as a powerful formalism.

5 The quantum effective action ΓrΦs and interacting quan-
tum field theory

(See Gelis, Ryder, Padmanabhan . . . )
In QFT, classical field configurations lose their meaning, because no single field configuration is
ever realized (see the discussion above). However, the expectation value xϕy “

ş

Dϕ ϕ eiSrϕs has
physical meaning, as do the n-point correlation functions xϕpx1q . . . ϕpxnqy.
Therefore, just like S produces the classical equations of motion, we would like to have a “quantum
version” that gives is the equations of motion for the expectation value xϕy.
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We will call this (at this stage hypothetical) object ΓrΦs, where we have introduced the notation
Φ “ xϕy, to clarify that the argument of Γ is not an individual classical field configuration, because
Γ must actually arise from the path integral.

Let us define
eiΓrΦs`i

ş

d4x jpxqΦpxq “

ż

Dϕ eiSrϕs`i
ş

d4x jpxqϕpxq, (229)

because then ΓrΦs appears analogously to Srϕs (in a complex exponential) and, if we would “switch
off” quantum fluctuations, i.e., only have a contribution from the classical field configurations, then
ΓrΦs “ SrΦs.
In fact, this definition implies that

ΓrΦs “ ´i lnZrjs ´

ż

d4x jpxqΦpxq, (230)

i.e. ΓrΦs is the Legendre transform of lnZrjs.

Mini-Exercise 12. Check that this expression for ΓrΦs follows from our definition above.

Solution.

eiΓrΦs`i
ş

d4x jpxqΦpxq “

ż

Dϕ eiSrϕs`i
ş

d4x ϕpxqjpxq

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Zrjs

“ñ ln
´

eiΓrΦsei
ş

d4x jpxqΦpxq
¯

“ lnZrjs

iΓrΦs ` i

ż

d4x jpxqΦpxq “ lnZrjs

“ñ ΓrΦs “ ´i lnZrjs ´

ż

d4x jpxqΦpxq.

From there, we obtain
δΓrΦs

δΦ “ ´jpxq. (231)

This is the quantum analogue of the classical equations of motion. It gives us the equations of
motion for the expectation value Φ.
Effective action as Legendre transform:
Let us be a bit more precise about the definition of ΓrΦs as the Legendre transform of Zrjs. First,
we review what a Legendre transform of a function fpxq is. Let the derivative of fpxq be p, i.e.,

df

dx
“ p. (232)

In our case, this would be a functional version of such an equation, namely δ
δjpxq

Zrjs “ Φ. We are
now interested in obtaining a quantity that takes p as its argument, but contains the information
on the function fpxq, i.e., we are looking for some gppq that arises from fpxq and is in a precise
correspondence to fpxq. We can derive from Eq. (232) that

dpxp´ fpxqq “ x dp` p dx´ df “ x dp. (233)
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Thus, by defining
gppq “ sup

x
pxp´ fpxqq , (234)

we have that
dg

dp
“ x. (235)

The supremum means that the right-hand side is evaluated at the value of x, where it takes its
maximal value. This is how gppq depends only on p, and not also on x, as it would be, if we would
leave out the supremum.
In our case, gppq is ΓrΦs, and we note that Eq. (230) should properly read

ΓrΦs “ sup
j

ˆ

´i lnZrjs ´

ż

d4xjpxq Φpxq

˙

. (236)

Let us finish this discussion with an example of the Legendre transform of a function. We consider
fpxq “ x2. Then px ´ fpxq is maximized at x “ p{2, and thus gppq “ px ¨ p´ fpxqq

ˇ

ˇ

ˇ

x“p{2
“

p2{2 ´ p2{4 “ p2{4.
Comment: There’s lots more to say about Γ and we will come back to it in QFT II to develop
our formal and physical understanding of it further.

5.1 Effective potential in scalar λϕ4 theory

(See Gelis, Ryder, Peskin/Schröder, Padmanabhan)

We are now ready to take a first look at an interacting theory. We will learn about the effects of
quantum fluctuations and will also encounter UV divergences again that we have to deal with.
We consider the simplest interacting theory, namely λϕ4

L “
1
2BµϕBµϕ´m2ϕ2 ´

λ

12ϕ
4. (237)

What is the physical meaning of the ϕpxq4 term? Remember that ϕpxq, understood as an operator,
when acting on the vacuum, produces a one-particle state with the particle localized at x. Thus,
if we act with ϕpxq four times, we describe four particles, all localized at x. This is clearly what
we need in order to describe interacting particles, because, to describe interactions, we must have
several particles, not just a single one.
Note also that the interaction is local, i.e., particles interact at a single point in spacetime. (An
example for a nonlocal interaction term would be

ş

d4x
ş

d4y ϕpxq2ϕpyq2. There is no QFT with
such interactions, because causality would be impossible to maintain in such a theory.) Local
interactions are what we observe in nature (e.g., at particle colliders, interactions happen when
particles meet at a point, they do not happen over a distance) and thus we use local interaction
terms in Lagrangians.
We exclude the ϕ3-term by a ϕ Ñ ´ϕ symmetry (Z2 symmetry) and we neglect other interac-
tions (ϕ6, BµϕBµϕ ϕ2 etc.) for now. ϕ4 is an interaction term, because it yields a non-linear term
in the equations of motion, i.e., instead of a freely propagating wave-like solution, we have self-
interactions. In terms of the corresponding particles, we can have scattering of the particles off
each other.
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The path integral for an interacting theory is complicated. It is no longer, as it would be for the
free theory, a Gaussian integral that we can do exactly. Therefore, we will consider an expansion
for it, in which the leading non-trivial correction is also obtained from a term quadratic in the
fields.
We expand around ϕcl “ xϕy. Because we expect that the ground state of the theory respects
translation invariance, ϕcl “ const. This constant may be zero, but, and this will be the more
interesting case, it may also be non-zero. In this case, the Z2-symmetry is broken spontaneously,
i.e., there is a symmetry of the Lagrangian that the ground state breaks. This also happens in the
Higgs sector of the Standard Model and is the mechanism through which the elementary particles
in the SM acquire their mass9.

In Zrjs, we can perform a shift of the integration variable,

Zrjs “

ż

Dϕ eipSrϕs`
ş

jϕq “
Ò

ϕ“ϕcl`φ

ż

Dφ eiSrϕcl`φs`i
ş

jpϕcl`φq. (238)

Now, we can expand S in φ. Intuitively, we can imagine that we are aiming at calculating the impact
of small quantum fluctuations around ϕcl, i.e., we account for the effect of field configurations close
to ϕcl.
We set j “ δS

δϕ

ˇ

ˇ

ˇ

ϕ“ϕcl
, so that the source only sources the classical field. Then,

Srϕcl ` φs `

ż

d4x jpϕcl ` φq (239)

“Srϕcls `

ż

d4y
δS

δϕpyq

ˇ

ˇ

ˇ

ˇ

ϕ“ϕcl

φpyq `
1
2

ż

d4y d4z φpyq
δ2Srϕs

δϕpyqδϕpzq

ˇ

ˇ

ˇ

ˇ

ϕ“ϕcl

φpzq

` . . .`

ż

d4x jpϕcl ` φq. (240)

Because of j “ δS
δϕ

ˇ

ˇ

ˇ

ϕ“ϕcl
, the term linear in φ and the source term with φ cancel. We evaluate the

δ2S term as a mini exercise.

Mini-Exercise 13. Evaluate

1
2

ż

d4y d4z φpyq
δ2Srϕs

δϕpyqδϕpzq

ˇ

ˇ

ˇ

ˇ

ϕ“ϕcl

φpzq. (241)

9The QCD bound states, such as the photon and neutron, acquire most of their mass through another spontaneous
symmetry breaking due to the strong-coupling regime that QCD enters at low energies.
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Solution. We obtain (l “ BµBµ)

δ

δϕpyq

δ

δϕpzq

ż

d4x

ˆ

´
1
2ϕpxqlϕpxq ´

1
2m

2ϕ2pxq ´
λ

12ϕ
4pxq

˙
ˇ

ˇ

ˇ

ˇ

ϕ“ϕcl

“

ż

d4x
´

´
1
2δ

4px´ yql δ4px´ zq ´
1
2δ

4px´ zql δ4px´ yq

´m2δ4px´ yqδ4px´ zq ´ λϕ2pxqδ4px´ yqδ4px´ zq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ϕ“ϕcl

“ ´ l δ4py ´ zq ´m2δ4py ´ zq ´ λϕ2
clδ

4py ´ zq.

We can write this as ´pl ` V 2pϕclqqδ4py ´ zq, where V 2 “ d2V
dϕ2 . Thus,

Zrjs “

ż

Dφ eiSrϕcls´ 1
2

ş

d4y d4z φpyqrpl`V 2
pϕclqqδ4

py´zqsφpzq`i
ş

d4x jϕcl (242)

“ eiSrϕcls`i
ş

d4x jϕcl

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
independent of φ,

can therefore be pulled out
of the path intergral.

ż

Dφ e´ 1
2

ş

d4y φpyqpl`V 2
pϕclqqφpyq. (243)

Now we need that (for a proof, see the exercises)
ż

Dφ e´ 1
2 ϕpxqAϕpxq “ pdetAq

´ 1
2 , (244)

detA “ etr ln A, (245)

pdetAq
´ 1

2 “ e´ 1
2 tr ln A. (246)

This helps us, because this expression also continues to hold if the ”matrix” A is infinitely large,
i.e., we use that

ż

d4x

ż

d4yφpxq
`

l ` V 2
˘

δ4px´ yqφpyq “

ż

d4xφpxqApx, yqφpyq Ð
ÿ

i

ÿ

j

φpxiqAijφpxjq. (247)

Thus,
Zrjs “ eiSrϕcls`i

ş

jϕcle´ 1
2 tr ln p´ipl`V 2

pϕclqqq ` . . . (248)

and finally, we obtain the expression for the one-loop effective action for a constant ϕcl:

Γrϕcls “ Srϕcls `

ż

jϕcl `
i

2 tr ln
`

l ` V 2pϕclq
˘

, (249)

where we first calculate ´i lnZrjs to obtain Γ, and where we can drop the “i” inside the ln, because
it only produces a constant addition to Γ which is field-independent and therefore irrelevant for
the physics.

This expression makes sense in that Γrϕcls “ Srϕcls to leading order. If we reinstate ℏ, then the
tr ln-term is „ ℏ, so it encodes the leading-order quantum correction. This term is called the 1-
loop term, because the tr implies an integration over momenta (the eigenvalues of l) of quantum
fluctuations. When we introduce the expansion in terms of Feynman diagrams later, we will see
that we will denote such an integration by a closed loop.
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In the case of ϕcl “ const that we consider here, Γrϕcls “
ş

d4x Veffrϕcls, because the kinetic term
vanishes for this case. Veff is called the effective potential. Our remaining task is to evaluate

i

2 tr ln
`

l ` V 2pϕclq
˘

“
i

2

ż

d4x

ż

d4p

p2πq4 ln

¨

˚

˝

´p2 `m2 ` λϕ2
cl´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

constants

˛

‹

‚

. (250)

ş

d4x just becomes a factor of spacetime volume that also appears before Veff. These drop put of
Veff. To evaluate the integral, we do several things:

• we note that the integral is divergent at large p2. This is again a consequence of us having
simply assumed that our QFT is valid up to arbitrarily small distances (i.e., arbitrarily high
momenta).

• we point out that m2, which we have been calling “mass”, does not actually correspond to
a measurable quantity. Rather, B

2

Bϕ2
cl
V

ˇ

ˇ

ˇ

ϕcl“0
“ m2

Phys is the actual mass that is associated to
the field. If we could turn off ℏ, then m2

Phys would correspond to the mass, but in nature, we
cannot turn off ℏ (or, more physically, we cannot turn off quantum fluctuations).

These two observations combined lead us to the following ideas:

1) The momentum integral should be regularized. The most intuitive way is through a cutoff Λ
in the momentum integral, although there are other ways of regularizing, e.g., dimensional
regularization, that we encounter later.

2) The cutoff (or more generally the regularization) just parametrizes our ignorance of the
correct physics at high momenta (small distances).
The physical results of measurements (e.g., of the mass of a particle or the strength with
which particles interacting) do not care about whether or not we do or do not understand
the UV physics. Therefore,

B2

Bϕ2
cl
Veffpϕclq

ˇ

ˇ

ˇ

ˇ

ϕcl“0
“ m2

Phys (‹1)

B4

Bϕ4
cl
Veffpϕclq

ˇ

ˇ

ˇ

ˇ

ϕcl“0
“ 2λPhys (‹2)

must no depend on the cutoff Λ (or whatever other parameter determines our regularization).
To achieve (‹1) and (‹2) is independent from Λ, we are led to the conclusion that m2 and
λ must be functions of Λ. We are free to make them that, because they are not physical
parameters that we could measure.
Therefore, we will implement the procedure of regularization and renormalization. Note that
“renormalization” is a misnomer, because it suggests that we have already normalized the
theory and now we need to “re”-normalize all parameters by huge (potentially even infinite)
shifts. This is a confusing view of the actual procedure, where we normalize the measurable
parameters once.

In practise, we now need to regularize. There are different methods of regularization, e.g., zeta-
function regularization (which is probably the most abstract of the regularization methods typically
used), dimensional regularization (which we will encounter and use later in the course, and which is
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a very common method in high-energy physics) and cutoff-regularization. We already encountered
cutoff-regularization when we considered the Casimir effect, and we will use it again here. Arguably,
in cutoff-regularization, it is easiest to understand what is going on.
To perform the regularization, we perform a Wick-rotation to Euclidean signature, i.e., we send

t Ñ iτ, (251)

where τ is Euclidean ”time”, i.e., the ”time” coordinate in a space with a metric with all negative
signs. Then, p2 Ñ ´p2

E , and
ż

d4p

p2πq4 ln
`

´p2 `m2 ` λϕ2
cl

˘

Ñ

ż

d4pE

p2πq4 ln
`

p2
E `m2 ` λϕ2

cl
˘

. (252)

The reason for doing a Wick-rotation is that we can now successfully introduce a cutoff, i.e.,
limit p2

E ă Λ2. In Minkowski signature, p2 ă Λ2 does not effectively work as a cutoff, because
p2 “ p2

0 ´ p⃗2, and thus p2 ă Λ2 still allows arbitrarily high energies p2
0, as long as they come with

an arbitrarily high spatial momentum p⃗2
i .

Thus,
ż

d4pE

p2πq4 ln
`

p2
E `m2 ` λϕ2

cl
˘

“

ż 8

0

dp2
E

32π2 p
2
E ln

`

p2
E `m2 ` λϕ2

cl
˘

Ñ

ż Λ2

0

dp2
E

32π2 p
2
E ln

`

p2
E `m2 ` λϕ2

cl
˘

Ñ

ż Λ2

0

dp2
E

32π2 p
2
E ln

ˆ

p2
E `m2 ` λϕ2

cl
Λ2

˙

. (253)

In the first step, we have used that the integral is rotationally symmetric in momentum space.
In the second step, we have introduced a regularization, that we ultimately would like to remove
again, i.e., we aim at sending Λ2 Ñ 8 to recover the original integral. In the meantime, we are
keeping in mind that the high-momentum part of the integral comes from a regime where we
cannot be sure whether our theory actually describes nature – we have simply extrapolated our
theory to arbitrarily high momenta (arbitrarily small distances). Thus, Λ2 can be given a physical
interpretation in the sense that it cuts off the part of the momentum integral, where some ”new
physics” may be, that our theory does not account for and therefore does not adequately describe
this regime.
In the very last step, we have noted that the argument of the ln is dimensionful (which it should
not be), and have therefore divided by Λ2. This we have achieved by subtracting

şΛ2

0
dp2

E

32π2 p
2
E ln

`

Λ2˘

from the previous expression. We are free to do this, because there is no dependence on the field
in this. We are just subtracting a field-independent constant, which does not contribute to the
equations of motion (and just shifts the value of the ground-state energy, but has no effect on
measurements, because we can only measure differences in energies.
Now we have an expression that we can evaluate and interpret. We will learn several important
consequences of quantum fluctuations, that are not specific to this particular theory, but rather
generic features of many QFTs.
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We obtain
ż Λ2

0

dp2
E

32π2 p
2
E ln

ˆ

p2
E `m2 ` λϕ2

cl
Λ2

˙

“
1

4 ¨ 32π2

”

Λ2 `

2m2 ´ Λ2 ` 2λϕ2
cl

˘

` 2Λ4 ln
ˆ

m2 ` Λ2 ` λϕ2
cl

Λ2

˙

´2
`

m2 ` λϕ2
cl

˘2
ˆ

ln
ˆ

m2 ` λϕ2
cl ` Λ2

Λ2

˙

´ ln
ˆ

m2 ` λϕ2
cl

Λ2

˙˙

ı

.

(254)

From there, by collecting all prefactors, and adding the classical contribution, we obtain the effec-
tive potential

Veffpϕclq “
1

4 ¨ 32π2

”

Λ2 `

2m2 ´ Λ2 ` 2λϕ2
cl

˘

` 2Λ4 ln
ˆ

m2 ` Λ2 ` λϕ2
cl

Λ2

˙

(255)

´2
`

m2 ` λϕ2
cl

˘2
ˆ

ln
ˆ

m2 ` λϕ2
cl ` Λ2

Λ2

˙

´ ln
ˆ

m2 ` λϕ2
cl

Λ2

˙˙

ı

`
m2

2 ϕcl `
λ

12ϕ
4
cl.

This is a complicated and somewhat lengthy expression, so there is lots to unpack. In fact, there
are also several important physical aspects to learn from this expression that we will go through
in detail below:

1. We see that the effective potential contains terms that have the same field dependence as the
classical terms, but come with prefactors that will diverge if we take Λ2 Ñ 8. One example
is the first term in the first line of Eq. (255), which is 2Λ2 λϕ2

cl. These are the terms that we
will have to deal with through renormalization and that have caused some confusion about
QFT, in particular in the earlier years of the development of QFT.

2. We also see that, upon expanding the ln-terms, we will obtain higher powers of ϕcl, e.g.,
ϕ6

cl or ϕ8
cl. This is another generic feature of QFTs: quantum fluctuations generate new

interactions. This result is not specific to ϕ4 theory, but appears in virtually all other QFTs.
A well-known, and physically really interesting, example, is Quantum Electrodynamics: one
of the phenomenologically crucial features of classical electrodynamics is that electromagnetic
waves do not interact with each other, i.e., the equations of motion are linear, and accordingly
photons do not interact. If this was different, and the equations would have strong non-
linearities, we would not be able to observe distant galaxies (nor would one be able to see a
black-board from across a lecture room, if the non-linearity was really strong). It turns out
that when we integrate quantum fluctuations of the electron, a four-photon-interaction term
is generated. Therefore, the quantum version of electrodynamics is fundamentally different
from the classical version – at least in principle. In practise, we are saved by the fact
that the photon-photon-interaction term comes with a tiny prefactor, such that one needs
extremely high electromagnetic fields to observe the non-linearities. High-intensity lasers are
constructed with the goal (among other goals, of course), to observe these terms for the first
time.

The corresponding action, encoding these terms, can be obtained from Quantum Electrody-
namics along exactly the same line as our calculation for the scalar field and is called the
Euler-Heisenberg effective action.

3. It is not obvious from the above expression, but, after we have taken care of the divergences,
the resulting potential is generically no longer minimized at the point ϕcl “ 0. Instead, a
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non-zero expectation value of ϕ permeates the vacuum. This is called spontaneous symmetry
breaking (i.e., the ground state does not realize a symmetry of the action; in this case, the Z2

symmetry of the action, under which ϕ Ñ ´ϕ, is not realized by the ground-state, because
the only field configuration that realizes that symmetry is ϕ “ 0, but we will have that
ϕcl ‰ 0 at the minimum of the effective potential.

Spontaneous symmetry breaking is a crucial ingredient of the Standard Model of particle
physics, where the Higgs sector has a spontaneously broken symmetry. The resulting non-
zero vacuum expectation value of the Higgs field that permeates the vacuum results in mass-
generation for the fermions as well as some of the gauge bosons of the Standard Model.

Here, we will see that quantum fluctuations can have the effect to spontaneously break a
symmetry that is realized classically.

To see all these results, we will now analyze the ϕ2
cl, ϕ4

cl and ϕ6
cl terms separately and then turn to

the analysis of the full expression for the finite part of the effective potential.
We first note that any terms that are of zeroth order in the field, whether they are divergent or
not, can simply be ignored. They contribute to a (possible infinite) shift of what we declare to be
”zero energy”, but (under the assumption of gravity not existing, that we operate under in this
course), this shift can be ignored, because we can only measure energy differences.
To isolate individual powers of ϕcl, we expand the logarithmic terms as follows, which we can do,
because we assume that Λ2 " m2, ϕ2

cl.

ln
ˆ

Λ2 `m2 ` λϕ2
cl

Λ2

˙

“ ln
ˆ

1 `
m2 ` λϕ2

cl
Λ2

˙

“

8
ÿ

n“1

p´1qn´1

n

ˆ

m2 ` λ2
cl

Λ2

˙n

, (256)

as well as
ln

ˆ

m2 ` λϕ2
cl

Λ2

˙

“ ln
ˆ

m2

Λ

˙

`

8
ÿ

n“1

p´1qn´1

n

ˆ

λϕ2
cl

m2

˙n

. (257)

Thus we obtain

Veff

ˇ

ˇ

ˇ

ϕ2
cl

“ ´
1

8 ¨ 32π2

ˆ

Λ22λ` 2Λ4 λ

Λ2 ´ 2 ¨ 2m2λ
m2

Λ2 ´ 2m4 λ

Λ2 ´ 2 ¨ 2m2λ ln m
2

Λ2 ´ 2m4 λ

m2

˙

`
m2

2 . (258)

The terms in the first line originate from quantum fluctuations, the term in the second line is the
classical contribution. We observe that all terms in the first line are „ λ, i.e., interactions are
necessary in order for quantum fluctuations to have an effect on the potential. Heuristically, we can
imagine quantum fluctuations as virtual particles. A cloud of ”virtual” particles is always there,
even in the ground state, and it interacts with any real particles, and can affect their properties
(e.g., their mass). However, to have such an effect, virtual and real particles need to interact with
each other, and thus, there must be an interaction term in the theory for the effect to be present.
We see that there are some contributions to the ϕ2

cl-term which are finite, even in the limit Λ2 Ñ 8,
so the effect of quantum fluctuations that changes the potential, is there irrespective of whether or
not UV divergences are present.
However, there are also contributions that would diverge in the limit Λ2 Ñ 8. To deal with them,
we remember that we cannot measure the classical term and the effect of quantum fluctuations
separately, we can only measure their combination. Thus, m2 is so far an unspecified parameter.
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If we thus require that

Veff

ˇ

ˇ

ˇ

ϕ2
cl

“
m2

phys

2 ϕ2
cl, (259)

with a finite m2
phys (that corresponds to the value an experiment would measure), we see that we

have to make the parameter m2 dependent on Λ in such a way that their combination gives m2
phys.

This, in essence, is the idea of renormalization, that we develop in more detail later in the course
and in QFT II.
Next, we turn to the ϕ4

cl term. To isolate it from the ln-terms, it is useful to use of a slightly
different expansion, namely

ln
ˆ

m2 ` Λ2 ` λϕ2
cl

Λ2

˙

“ ln
ˆ

1 `
m2

Λ2

˙

`

8
ÿ

n“1

p´1qn´1

n

ˆ

λϕ2
cl

m2 ` Λ2

˙n

. (260)

Using this, we obtain

Veff

ˇ

ˇ

ˇ

ϕ4
cl

“ ´
1

8 ¨ 32π2

«

2Λ4 λ2

m2 ` Λ2 ´ 2λ2
ˆ

ln
ˆ

1 `
m2

Λ2

˙

´ ln m
2

Λ2

˙

`2m2 ¨ 2λ
ˆ

λ

m2 ` Λ2 ´
λ

m2

˙

´ 2m4

˜

´
λ2

2 pm2 ` Λ2q
2 `

λ2

2m4

¸ff

`
λ

12 . (261)

We again see that the terms from quantum fluctuations are proportional to the interaction, in
this case, they are „ λ2. There are terms that remain finite in the limit Λ2 Ñ 8, so we see that
quantum fluctuations also change the quartic term (i.e., the strength of the interaction), in the
effective potential.
Then, there are again divergent terms. We absorb them by defining the physical interaction
strength

Veff

ˇ

ˇ

ˇ

ϕ4
cl

“
λphys

12 . (262)

This is possible, because we can adjust λ to depend on Λ in such a way that the divergences in
λphys cancel.
In general, we will call theories in which we can absorb divergences within the existing mass/coupling
parameters renormalizable. This means that in such theories, the unknown physics at high mo-
menta (beyond the cutoff), affects these couplings (in our case, mass and quartic coupling). There-
fore, we cannot know the physical values m2

phys and λphys, because the UV physics that they depend
on is not known. They parameterize our ignorance about the UV properties of the theory.
However, the rest of the coupling parameters (in our case, this will be λ6 of ϕ6 etc, as we will see
below), are calculable and independent of the UV physics.
Renormalizability thus means that we have a theory with finitely many free parameters – a pre-
dictive theory.
Usually, in QFT courses, renormalization is discussed later, and we will also come back to discuss
it in more detail. However, taking a look at it early on is useful not just to understand what the
effect of quantum fluctuations – the existence of which is the key difference between a classical
field theory and a quantum field theory – actually is, but also in order to check whether they
result in a theory that is not predictive at the quantum level, because it has a finite number of free
parameters.10

10There is much more to say and understand here, part of which we will cover in QFT II. It has to do with
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Now let us consider the ϕ6
cl terms. If these are also divergent, then we are in trouble, because we

have used up the free parameters of our classical action, m2 and λ, to absorb the divergences.
We obtain

Veff

ˇ

ˇ

ˇ

ϕ6
cl

“
´1

8 ¨ 32π2

«

2Λ4 λ3

3 pm2 ` Λ2q
3 ´ 2m4

ˆ
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˙
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ˆ

´
λ2

2pm2 ` Λ2q2 `
λ2

2pm2q2

˙

´ 2λ2
ˆ

λ

m2 ` Λ2 ´
λ

m2

˙

ff

` 0. (263)

The last term is the classical contribution, which is zero. The quantum contribution is non-zero,
i.e., quantum fluctuations generate new interactions.
We observe that the limit Λ2 Ñ 8 is finite; there are no divergences at this order in the field. We
obtain

Veff

ˇ

ˇ

ˇ

ϕ6
cl

Ñ́
Λ2Ñ8

´
´1

12 ¨ 32π2
λ3

m2 . (264)

Therefore, quantum fluctuations generate a calculable ϕ6 interaction (and similarly, higher-order
interactions). These are independent of the presence of divergences in the quadratic and the quartic
term.
This result, that quantum fluctuations generate new interactions, with finite, calculable coeffi-
cients, is general and is not tied to whether or not there are divergences in the theory.

Finally, let us isolate the finite piece in the effective potential without Taylor-expanding in the field.
We assume that we have previously taken care of the divergences and they result in a quadratic
and quartic term with undetermined coefficients, i.e.,

Veff “
m2

phys

2 ϕ2
cl `

λphys

12 ϕ4
cl ` Veff

ˇ

ˇ

ˇ

finite
. (265)

To isolate the finite terms, we have to rewrite the ln-terms, because they contribute to both the
divergences (that we absorb in m2 and λ) and the finite terms. We write

ln
ˆ

m2 ` λϕ2
cl ` Λ2

Λ2

˙

´ ln
ˆ

m2 ` λϕ2
cl

Λ2

˙

“ ln
ˆ
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cl

˙

“ ln
ˆ

Λ
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µ2

m2 ` λϕ2
cl

˙

“ ln
ˆ

Λ2

µ2

˙

` ln
ˆ

m2 ` λϕ2
cl

µ2

˙

. (266)

In the final line, the first term contributes to the divergent terms and the second one to the
finite term. To do this separation, we had to introduce an arbitrary scale µ2. This is called the
Renormalization scale. We will come back to it in more detail later in the course. For now we
understanding non-renormalizable theories as effective field theories, and with understanding that renormalizable
theories do not automatically make sense at all scales. Keywords that we will cover later (in QFT II), are asymptotic
safety, asymptotic freedom, effective field theories, the Renormalization Group and Landau poles. This will be
relevant for the quantum physics of QCD, QED and the Standard Model as a whole, as well as for numerous
condensed-matter models. It will even touch on ideas for a quantum theory of gravity.
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Figure 7: We show the finite part of the effective potential (for λ “ 0.1 and m2{µ2 “ 0.72), in
blue. The blue dotted vertical line indicates where the minimum of the potential lies. The black
dashed line is the classical potential with the same values of mass and coupling.

can just think of it as a scale that we need to get the units right in our expressions and have
dimensionless arguments of logarithms.
Thus we have

Veff

ˇ

ˇ

ˇ

finite
“

1
4 ¨ 32π2

`

m2 ` λϕ2
cl

˘2 ln
ˆ

m2 ` λϕ2
cl

µ2

˙

. (267)

For small enough ϕ2
cl, the ln is negative. Therefore the potential takes the form shown in Fig. 7.

Whereas the classical theory has ϕ “ 0 as a solution, quantum fluctuations introduce a non-zero
value of ϕcl at the minimum of the potential (for some values of parameters of the theory). In
those cases, the Z2-symmetry of the classical action is broken spontaneously in the ground state.
This means that the symmetry of the action is not realized by the ground state, because ϕcl “ 0,
which is the only field configuration that realizes this symmetry, is not a minimum.
Instead, we can evaluate where the two possible minima lie. We take the derivative of Veff

ˇ

ˇ

ˇ

finite
with respect to ϕcl and set it to zero. This equation determines extrema. ϕcl “ 0 is a solution,
but does not correspond to a minimum for all values of parameters. Instead, the remaining two
solutions are

ϕcl “ ˘

c

µ2e´µ2{2 ´m2

λ
‰ 0. (268)

The choice between the two minima that the vacuum has to ”spontaneously make”, is the act
of spontaneous symmetry breaking. It leads to a non-zero expectation value of the field that
permeates the vacuum.
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